torch.sparse.sum#
- torch.sparse.sum(input, dim=None, dtype=None)[原始碼]#
返回給定稀疏張量每行的和。
返回給定維度
dim下,稀疏張量input每行的和。如果dim是一個維度列表,則對所有這些維度進行歸約。當對所有sparse_dim求和時,此方法將返回一個密集張量而不是稀疏張量。所有求和的
dim都被壓縮(參見torch.squeeze()),導致輸出張量比input少dim個維度。在反向傳播期間,只有
input的nnz位置上的梯度才會向後傳播。請注意,input的梯度是合併的。- 引數
input (Tensor) – 輸入的稀疏張量
dtype (
torch.dtype, 可選) – 返回的 Tensor 的期望資料型別。預設:input的 dtype。
- 返回型別
示例
>>> nnz = 3 >>> dims = [5, 5, 2, 3] >>> I = torch.cat([torch.randint(0, dims[0], size=(nnz,)), torch.randint(0, dims[1], size=(nnz,))], 0).reshape(2, nnz) >>> V = torch.randn(nnz, dims[2], dims[3]) >>> size = torch.Size(dims) >>> S = torch.sparse_coo_tensor(I, V, size) >>> S tensor(indices=tensor([[2, 0, 3], [2, 4, 1]]), values=tensor([[[-0.6438, -1.6467, 1.4004], [ 0.3411, 0.0918, -0.2312]], [[ 0.5348, 0.0634, -2.0494], [-0.7125, -1.0646, 2.1844]], [[ 0.1276, 0.1874, -0.6334], [-1.9682, -0.5340, 0.7483]]]), size=(5, 5, 2, 3), nnz=3, layout=torch.sparse_coo) # when sum over only part of sparse_dims, return a sparse tensor >>> torch.sparse.sum(S, [1, 3]) tensor(indices=tensor([[0, 2, 3]]), values=tensor([[-1.4512, 0.4073], [-0.8901, 0.2017], [-0.3183, -1.7539]]), size=(5, 2), nnz=3, layout=torch.sparse_coo) # when sum over all sparse dim, return a dense tensor # with summed dims squeezed >>> torch.sparse.sum(S, [0, 1, 3]) tensor([-2.6596, -1.1450])