評價此頁

MaxPool2d#

class torch.nn.modules.pooling.MaxPool2d(kernel_size, stride=None, padding=0, dilation=1, return_indices=False, ceil_mode=False)[原始碼]#

在由多個輸入平面組成的輸入訊號上應用 2D 最大池化。

在最簡單的情況下,具有輸入尺寸 (N,C,H,W)(N, C, H, W)kernel_size (kH,kW)(kH, kW) 的圖層的輸出值可以精確描述為

out(Ni,Cj,h,w)=maxm=0,,kH1maxn=0,,kW1input(Ni,Cj,stride[0]×h+m,stride[1]×w+n)\begin{aligned} out(N_i, C_j, h, w) ={} & \max_{m=0, \ldots, kH-1} \max_{n=0, \ldots, kW-1} \\ & \text{input}(N_i, C_j, \text{stride[0]} \times h + m, \text{stride[1]} \times w + n) \end{aligned}

如果 padding 非零,則輸入將在兩側隱式填充負無窮。 dilation 控制核點之間的間隔。這比較難描述,但這個 連結 有一個很好的 dilation 作用的視覺化。

注意

當 ceil_mode=True 時,如果滑動視窗從左側填充或輸入開始,則允許它們超出邊界。從右側填充區域開始的滑動視窗將被忽略。

引數 kernel_sizestridepaddingdilation 可以是

  • 單個 int – 在這種情況下,高度和寬度維度使用相同的值

  • 兩個 int 的 tuple – 在這種情況下,第一個 int 用於高度維度,第二個 int 用於寬度維度

引數
  • kernel_size (Union[int, tuple[int, int]]) – 取最大值的視窗大小

  • stride (Union[int, tuple[int, int]]) – 視窗的步幅。預設值是 kernel_size

  • padding (Union[int, tuple[int, int]]) – 隱式負無窮填充,將新增到兩側

  • dilation (Union[int, tuple[int, int]]) – 一個控制視窗中元素步長的引數

  • return_indices (bool) – 如果為 True,則將返回最大值的索引以及輸出。對後續的 torch.nn.MaxUnpool2d 很有用

  • ceil_mode (bool) – 當為 True 時,將使用 ceil 而不是 floor 來計算輸出形狀

形狀
  • 輸入:(N,C,Hin,Win)(N, C, H_{in}, W_{in})(C,Hin,Win)(C, H_{in}, W_{in})

  • 輸出:(N,C,Hout,Wout)(N, C, H_{out}, W_{out})(C,Hout,Wout)(C, H_{out}, W_{out}),其中

    Hout=Hin+2padding[0]dilation[0]×(kernel_size[0]1)1stride[0]+1H_{out} = \left\lfloor\frac{H_{in} + 2 * \text{padding[0]} - \text{dilation[0]} \times (\text{kernel\_size[0]} - 1) - 1}{\text{stride[0]}} + 1\right\rfloor
    Wout=Win+2padding[1]dilation[1]×(kernel_size[1]1)1stride[1]+1W_{out} = \left\lfloor\frac{W_{in} + 2 * \text{padding[1]} - \text{dilation[1]} \times (\text{kernel\_size[1]} - 1) - 1}{\text{stride[1]}} + 1\right\rfloor

示例

>>> # pool of square window of size=3, stride=2
>>> m = nn.MaxPool2d(3, stride=2)
>>> # pool of non-square window
>>> m = nn.MaxPool2d((3, 2), stride=(2, 1))
>>> input = torch.randn(20, 16, 50, 32)
>>> output = m(input)
forward(input)[原始碼]#

執行前向傳播。