torch.func.stack_module_state#
- torch.func.stack_module_state(models) params, buffers[原始碼]#
為使用
vmap()進行整合準備一個 `torch.nn.Module` 列表。給定一個由
M個同類nn.Module組成的列表,返回兩個字典,它們將所有引數和緩衝區按名稱堆疊在一起。堆疊的引數是可最佳化的(即它們是 autograd 歷史中的新葉子節點,與原始引數無關,可以直接傳遞給最佳化器)。以下是一個整合一個非常簡單的模型的示例
num_models = 5 batch_size = 64 in_features, out_features = 3, 3 models = [torch.nn.Linear(in_features, out_features) for i in range(num_models)] data = torch.randn(batch_size, 3) def wrapper(params, buffers, data): return torch.func.functional_call(models[0], (params, buffers), data) params, buffers = stack_module_state(models) output = vmap(wrapper, (0, 0, None))(params, buffers, data) assert output.shape == (num_models, batch_size, out_features)
當存在子模組時,會遵循 state dict 的命名約定
import torch.nn as nn class Foo(nn.Module): def __init__(self, in_features, out_features): super().__init__() hidden = 4 self.l1 = nn.Linear(in_features, hidden) self.l2 = nn.Linear(hidden, out_features) def forward(self, x): return self.l2(self.l1(x)) num_models = 5 in_features, out_features = 3, 3 models = [Foo(in_features, out_features) for i in range(num_models)] params, buffers = stack_module_state(models) print(list(params.keys())) # "l1.weight", "l1.bias", "l2.weight", "l2.bias"
警告
所有一起堆疊的模組必須是相同的(除了它們的引數/緩衝區的值)。例如,它們應該處於相同的模式(訓練或評估)。