torch.functional.unravel_index#
- torch.functional.unravel_index(indices, shape)[原始碼]#
將平坦索引張量轉換為座標張量元組,這些元組可以索引到任意指定形狀的張量。
- 引數
indices (Tensor) – 一個整數張量,包含任意形狀為
shape的張量的扁平化版本的索引。所有元素必須在[0, prod(shape) - 1]的範圍內。shape (int, ints 的 sequence, or torch.Size) – 任意張量的形狀。所有元素必須是非負的。
- 返回
輸出中的每個
i-th 張量對應於shape的第i個維度。每個張量與indices具有相同的形狀,並且包含一個索引到第i個維度,對應於indices中提供的每個扁平索引。- 返回型別
tuple of Tensors
示例
>>> import torch >>> torch.unravel_index(torch.tensor(4), (3, 2)) (tensor(2), tensor(0)) >>> torch.unravel_index(torch.tensor([4, 1]), (3, 2)) (tensor([2, 0]), tensor([0, 1])) >>> torch.unravel_index(torch.tensor([0, 1, 2, 3, 4, 5]), (3, 2)) (tensor([0, 0, 1, 1, 2, 2]), tensor([0, 1, 0, 1, 0, 1])) >>> torch.unravel_index(torch.tensor([1234, 5678]), (10, 10, 10, 10)) (tensor([1, 5]), tensor([2, 6]), tensor([3, 7]), tensor([4, 8])) >>> torch.unravel_index(torch.tensor([[1234], [5678]]), (10, 10, 10, 10)) (tensor([[1], [5]]), tensor([[2], [6]]), tensor([[3], [7]]), tensor([[4], [8]])) >>> torch.unravel_index(torch.tensor([[1234], [5678]]), (100, 100)) (tensor([[12], [56]]), tensor([[34], [78]]))