評價此頁

torch.quantized_max_pool2d#

torch.quantized_max_pool2d(input, kernel_size, stride=[], padding=0, dilation=1, ceil_mode=False) Tensor#

對由多個輸入平面組成的輸入量化張量應用二維最大池化。

引數
  • input (Tensor) – 量化張量

  • kernel_size (list of int) – 滑動視窗的大小

  • stride (list of int, optional) – 滑動視窗的步長

  • padding (list of int, optional) – 要新增到兩側的填充,必須 >= 0 且 <= kernel_size / 2

  • dilation (list of int, optional) – 滑動視窗內元素之間的步長,必須 > 0。預設為 1

  • ceil_mode (bool, optional) – 如果為 True,則使用 ceil 而不是 floor 來計算輸出形狀。預設為 False。

返回

應用了 max_pool2d 的量化張量。

返回型別

張量

示例

>>> qx = torch.quantize_per_tensor(torch.rand(2, 2, 2, 2), 1.5, 3, torch.quint8)
>>> torch.quantized_max_pool2d(qx, [2,2])
tensor([[[[1.5000]],

        [[1.5000]]],


        [[[0.0000]],

        [[0.0000]]]], size=(2, 2, 1, 1), dtype=torch.quint8,
    quantization_scheme=torch.per_tensor_affine, scale=1.5, zero_point=3)