評價此頁

SparseAdam#

class torch.optim.sparse_adam.SparseAdam(params, lr=0.001, betas=(0.9, 0.999), eps=1e-08, maximize=False)[原始碼]#

SparseAdam 實現了一個 Adam 演算法的掩碼版本,適用於稀疏梯度。目前,由於實現限制(如下文所述),SparseAdam 僅用於一小部分用例,特別是具有稀疏梯度佈局的密集佈局引數。這發生在模組反向傳播已生成稀疏佈局的 grad 的特殊情況。一個具有此行為的示例神經網路模組是 nn.Embedding(sparse=True)

SparseAdam 透過掩蓋與梯度中零值對應的引數和動量更新來近似 Adam 演算法。而 Adam 演算法會根據梯度的所有值來更新一階動量、二階動量和引數,SparseAdam 只更新與梯度中非零值對應的動量和引數。

一個簡化的思考方式是,這個實現是 有意為之

  1. 建立一個稀疏梯度中非零值的掩碼。例如,如果你的梯度看起來像 [0, 5, 0, 0, 9],那麼掩碼將是 [0, 1, 0, 0, 1]。

  2. 將此掩碼應用於執行動量,並僅對非零值進行計算。

  3. 將此掩碼應用於引數,並且僅對非零值進行更新。

實際上,我們使用稀疏佈局的 Tensor 來最佳化此近似,這意味著被掩蓋而未具體化的梯度越多,最佳化效能就越好。由於我們依賴於使用稀疏佈局的 Tensor,我們推斷稀疏佈局中的任何具體化值都為非零,而我們實際上並不會驗證所有值是否都為零!重要的是不要混淆語義稀疏的 Tensor(值中有很多零的 Tensor)和稀疏佈局的 Tensor(.is_sparse 返回 True 的 Tensor)。SparseAdam 近似旨在用於 語義 稀疏的 Tensor,而稀疏佈局僅僅是實現細節。一個更清晰的實現將是使用 MaskedTensors,但它們還在實驗階段。

注意

如果你認為你的梯度在語義上是稀疏的(但沒有稀疏佈局),那麼這個變體可能不適合你。理想情況下,你希望避免首先具體化任何被認為是稀疏的值,因為將所有 grad 從密集佈局轉換為稀疏佈局的開銷可能抵消效能的提升。在這種情況下,使用 Adam 可能是最佳選擇,除非你能輕鬆地修改你的模組以輸出類似 nn.Embedding(sparse=True) 的稀疏 grad。如果你堅持轉換你的 grad,你可以在呼叫 .step() 之前,手動覆蓋你的引數的 .grad 欄位,用它們的稀疏等價物來替換。

引數
  • params (iterable) – 要最佳化的引數或命名引數的迭代器,或者是定義引數組的字典的迭代器。使用命名引數時,所有組中的所有引數都應該命名。

  • lr (float, Tensor, optional) – 學習率 (預設: 1e-3)

  • betas (Tuple[float, float], optional) – 用於計算梯度及其平方的執行平均值的係數 (預設: (0.9, 0.999))

  • eps (float, optional) – 新增到分母中的項,以提高數值穩定性 (預設: 1e-8)

  • maximize (bool, optional) – 最大化目標函式相對於 params,而不是最小化 (預設: False)

add_param_group(param_group)[原始碼]#

將一個引數組新增到 Optimizerparam_groups 中。

這在微調預訓練網路時非常有用,因為在訓練過程中,可以使凍結的層可訓練,並將其新增到 Optimizer 中。

引數

param_group (dict) – 指定哪些 Tensor 應該被最佳化,以及組特定的最佳化選項。

load_state_dict(state_dict)[原始碼]#

載入最佳化器狀態。

引數

state_dict (dict) – 最佳化器狀態。應該是呼叫 state_dict() 後返回的物件。

警告

請確保在初始化 torch.optim.lr_scheduler.LRScheduler 後呼叫此方法,因為在此之前呼叫會覆蓋載入的學習率。

注意

引數的名稱(如果它們存在於 state_dict() 中每個引數組的“param_names”鍵下)不會影響載入過程。要使用引數名稱進行自定義情況(例如,當載入的狀態字典中的引數與最佳化器中初始化的引數不同時),應實現自定義的 register_load_state_dict_pre_hook 來相應地調整載入的字典。如果載入的狀態字典 param_groups 中存在 param_names,它們將被儲存並覆蓋最佳化器狀態中當前的名稱(如果存在)。如果它們不存在於載入的狀態字典中,最佳化器的 param_names 將保持不變。

示例

>>> model = torch.nn.Linear(10, 10)
>>> optim = torch.optim.SGD(model.parameters(), lr=3e-4)
>>> scheduler1 = torch.optim.lr_scheduler.LinearLR(
...     optim,
...     start_factor=0.1,
...     end_factor=1,
...     total_iters=20,
... )
>>> scheduler2 = torch.optim.lr_scheduler.CosineAnnealingLR(
...     optim,
...     T_max=80,
...     eta_min=3e-5,
... )
>>> lr = torch.optim.lr_scheduler.SequentialLR(
...     optim,
...     schedulers=[scheduler1, scheduler2],
...     milestones=[20],
... )
>>> lr.load_state_dict(torch.load("./save_seq.pt"))
>>> # now load the optimizer checkpoint after loading the LRScheduler
>>> optim.load_state_dict(torch.load("./save_optim.pt"))
register_load_state_dict_post_hook(hook, prepend=False)[原始碼]#

註冊一個 load_state_dict 後置鉤子,它將在呼叫 load_state_dict() 後被呼叫。它應該具有以下簽名:

hook(optimizer) -> None

引數 optimizer 是正在使用的最佳化器例項。

呼叫 load_state_dictself 上後,鉤子將使用引數 self 呼叫。註冊的鉤子可用於在 load_state_dict 載入了 state_dict 後執行後處理。

引數
  • hook (Callable) – 使用者定義的待註冊鉤子。

  • prepend (bool) – 如果為 True,則提供的後置 hook 將在 load_state_dict 上所有已註冊的後置鉤子之前執行。否則,提供的 hook 將在所有已註冊的後置鉤子之後執行。(預設: False)

返回

一個控制代碼,可用於透過呼叫 handle.remove() 來移除新增的鉤子

返回型別

torch.utils.hooks.RemoveableHandle

register_load_state_dict_pre_hook(hook, prepend=False)[原始碼]#

註冊一個 load_state_dict 前置鉤子,它將在呼叫 load_state_dict() 之前被呼叫。它應該具有以下簽名:

hook(optimizer, state_dict) -> state_dict or None

引數 optimizer 是正在使用的最佳化器例項,引數 state_dict 是使用者傳遞給 load_state_dictstate_dict 的淺複製。鉤子可以就地修改 state_dict,或者選擇性地返回一個新的。如果返回了 state_dict,它將被用於載入到最佳化器中。

鉤子將使用引數 selfstate_dict 呼叫,在呼叫 load_state_dictself 上之前。註冊的鉤子可用於在呼叫 load_state_dict 之前執行預處理。

引數
  • hook (Callable) – 使用者定義的待註冊鉤子。

  • prepend (bool) – 如果為 True,則提供的預置 hook 將在 load_state_dict 上所有已註冊的預置鉤子之前執行。否則,提供的 hook 將在所有已註冊的預置鉤子之後執行。(預設: False)

返回

一個控制代碼,可用於透過呼叫 handle.remove() 來移除新增的鉤子

返回型別

torch.utils.hooks.RemoveableHandle

register_state_dict_post_hook(hook, prepend=False)[原始碼]#

註冊一個 state_dict 後置鉤子,它將在呼叫 state_dict() 後被呼叫。

它應具有以下簽名

hook(optimizer, state_dict) -> state_dict or None

鉤子將使用引數 selfstate_dict 呼叫,在 self 上生成 state_dict 後。鉤子可以就地修改 state_dict,或者選擇性地返回一個新的。註冊的鉤子可用於在返回 state_dict 之前對其進行後處理。

引數
  • hook (Callable) – 使用者定義的待註冊鉤子。

  • prepend (bool) – 如果為 True,則提供的後置 hook 將在 state_dict 上所有已註冊的後置鉤子之前執行。否則,提供的 hook 將在所有已註冊的後置鉤子之後執行。(預設: False)

返回

一個控制代碼,可用於透過呼叫 handle.remove() 來移除新增的鉤子

返回型別

torch.utils.hooks.RemoveableHandle

register_state_dict_pre_hook(hook, prepend=False)[原始碼]#

註冊一個 state_dict 前置鉤子,它將在呼叫 state_dict() 之前被呼叫。

它應具有以下簽名

hook(optimizer) -> None

引數 optimizer 是正在使用的最佳化器例項。鉤子將使用引數 self 呼叫,在呼叫 state_dictself 上之前。註冊的鉤子可用於在呼叫 state_dict 之前執行預處理。

引數
  • hook (Callable) – 使用者定義的待註冊鉤子。

  • prepend (bool) – 如果為 True,則提供的預置 hook 將在 state_dict 上所有已註冊的預置鉤子之前執行。否則,提供的 hook 將在所有已註冊的預置鉤子之後執行。(預設: False)

返回

一個控制代碼,可用於透過呼叫 handle.remove() 來移除新增的鉤子

返回型別

torch.utils.hooks.RemoveableHandle

register_step_post_hook(hook)[原始碼]#

註冊一個最佳化器步驟後鉤子,它將在最佳化器步驟之後被呼叫。

它應具有以下簽名

hook(optimizer, args, kwargs) -> None

引數 optimizer 是正在使用的最佳化器例項。

引數

hook (Callable) – 使用者定義的待註冊鉤子。

返回

一個控制代碼,可用於透過呼叫 handle.remove() 來移除新增的鉤子

返回型別

torch.utils.hooks.RemovableHandle

register_step_pre_hook(hook)[原始碼]#

註冊一個最佳化器步驟預鉤子,它將在最佳化器步驟之前被呼叫。

它應具有以下簽名

hook(optimizer, args, kwargs) -> None or modified args and kwargs

引數 optimizer 是正在使用的最佳化器例項。如果 args 和 kwargs 被前置鉤子修改,則轉換後的值將作為包含 new_args 和 new_kwargs 的元組返回。

引數

hook (Callable) – 使用者定義的待註冊鉤子。

返回

一個控制代碼,可用於透過呼叫 handle.remove() 來移除新增的鉤子

返回型別

torch.utils.hooks.RemovableHandle

state_dict()[原始碼]#

將最佳化器的狀態作為 dict 返回。

它包含兩個條目

  • state:一個包含當前最佳化狀態的 Dict。其內容

    在不同的最佳化器類中會有所不同,但有一些共同的特點。例如,狀態是按引數儲存的,而引數本身不儲存。 state 是一個對映引數 ID 到一個包含每個引數對應狀態的 Dict 的字典。

  • param_groups:一個包含所有引數組的 List,其中每個

    引數組是一個 Dict。每個引數組包含最佳化器特有的元資料,例如學習率和權重衰減,以及組中引數的 ID 列表。如果引數組使用 named_parameters() 初始化,則名稱內容也會儲存在狀態字典中。

注意:引數 ID 可能看起來像索引,但它們只是將狀態與 param_group 關聯的 ID。從 state_dict 載入時,最佳化器會按順序匹配 param_group 的 params(int ID)和最佳化器的 param_groups(實際的 nn.Parameter),以匹配狀態,而無需額外驗證。

返回的狀態字典可能看起來像

{
    'state': {
        0: {'momentum_buffer': tensor(...), ...},
        1: {'momentum_buffer': tensor(...), ...},
        2: {'momentum_buffer': tensor(...), ...},
        3: {'momentum_buffer': tensor(...), ...}
    },
    'param_groups': [
        {
            'lr': 0.01,
            'weight_decay': 0,
            ...
            'params': [0]
            'param_names' ['param0']  (optional)
        },
        {
            'lr': 0.001,
            'weight_decay': 0.5,
            ...
            'params': [1, 2, 3]
            'param_names': ['param1', 'layer.weight', 'layer.bias'] (optional)
        }
    ]
}
返回型別

dict[str, Any]

step(closure=None)[原始碼]#

執行單個最佳化步驟。

引數

closure (Callable, 可選) – 一個重新評估模型並返回損失的閉包。

zero_grad(set_to_none=True)[原始碼]#

重置所有最佳化過的 torch.Tensor 的梯度。

引數

set_to_none (bool, optional) –

將梯度設定為 None,而不是設定為零。預設值:True

這通常會降低記憶體佔用,並能適度提高效能。但是,它會改變某些行為。例如:

  1. 當用戶嘗試訪問梯度並對其進行手動運算時,None 屬性或全零的 Tensor 會產生不同的行為。

  2. 如果使用者請求 zero_grad(set_to_none=True) 然後執行 backward,對於未收到梯度的引數,其 .grad 保證為 None。

  3. torch.optim 最佳化器在梯度為 0 或 None 時行為不同(一種情況是以 0 梯度執行步長,另一種情況是跳過該步長)。