評價此頁

CircularPad2d#

class torch.nn.CircularPad2d(padding)[source]#

使用輸入邊界的迴圈填充來填充輸入張量。

張量維度開頭的值用於填充結尾,維度結尾的值用於填充開頭。如果應用負填充,則會移除張量的末端。

對於 N 維填充,請使用 torch.nn.functional.pad()

引數

padding (int, tuple) – 填充的大小。如果為 int,則在所有邊界使用相同的填充。如果為 4-tuple,則使用 (padding_left\text{padding\_left}, padding_right\text{padding\_right}, padding_top\text{padding\_top}, padding_bottom\text{padding\_bottom}) 請注意,填充大小應小於或等於相應的輸入維度。

形狀
  • 輸入: (N,C,Hin,Win)(N, C, H_{in}, W_{in})(C,Hin,Win)(C, H_{in}, W_{in})

  • 輸出: (N,C,Hout,Wout)(N, C, H_{out}, W_{out})(C,Hout,Wout)(C, H_{out}, W_{out}),其中

    Hout=Hin+padding_top+padding_bottomH_{out} = H_{in} + \text{padding\_top} + \text{padding\_bottom}

    Wout=Win+padding_left+padding_rightW_{out} = W_{in} + \text{padding\_left} + \text{padding\_right}

示例

>>> m = nn.CircularPad2d(2)
>>> input = torch.arange(9, dtype=torch.float).reshape(1, 1, 3, 3)
>>> input
tensor([[[[0., 1., 2.],
          [3., 4., 5.],
          [6., 7., 8.]]]])
>>> m(input)
tensor([[[[4., 5., 3., 4., 5., 3., 4.],
          [7., 8., 6., 7., 8., 6., 7.],
          [1., 2., 0., 1., 2., 0., 1.],
          [4., 5., 3., 4., 5., 3., 4.],
          [7., 8., 6., 7., 8., 6., 7.],
          [1., 2., 0., 1., 2., 0., 1.],
          [4., 5., 3., 4., 5., 3., 4.]]]])
>>> # using different paddings for different sides
>>> m = nn.CircularPad2d((1, 1, 2, 0))
>>> m(input)
tensor([[[[5., 3., 4., 5., 3.],
          [8., 6., 7., 8., 6.],
          [2., 0., 1., 2., 0.],
          [5., 3., 4., 5., 3.],
          [8., 6., 7., 8., 6.]]]])