torch.func.jacfwd#
- torch.func.jacfwd(func, argnums=0, has_aux=False, *, randomness='error')[source]#
使用前向模式自動微分計算
func相對於argnum索引處的引數(們)的雅可比矩陣。- 引數
func (function) – A Python function that takes one or more arguments, one of which must be a Tensor, and returns one or more Tensors
argnums (int or Tuple[int]) – 可選,整數或整數元組,用於指定要計算雅可比矩陣的引數。預設值:0。
has_aux (bool) – 指示
func返回一個(output, aux)元組的標誌,其中第一個元素是要微分的函式的輸出,第二個元素是不會被微分的輔助物件。預設值:False。randomness (str) – 指示要使用的隨機性型別的標誌。更多詳細資訊請參閱
vmap()。允許的值:“different”、“same”、“error”。預設值:“error”。
- 返回
返回一個函式,該函式接受與
func相同的輸入,並返回func相對於argnums中指定引數的 Jacobian。如果has_aux 為 True,則返回的函式將返回一個(jacobian, aux)元組,其中jacobian是 Jacobian,aux是func返回的輔助物件。
注意
您可能會看到此 API 因“前向模式 AD 未對運算子 X 實現”而報錯。如果遇到這種情況,請提交一個 Bug 報告,我們會優先處理。另一種選擇是使用
jacrev(),它的運算子覆蓋範圍更廣。A basic usage with a pointwise, unary operation will give a diagonal array as the Jacobian
>>> from torch.func import jacfwd >>> x = torch.randn(5) >>> jacobian = jacfwd(torch.sin)(x) >>> expected = torch.diag(torch.cos(x)) >>> assert torch.allclose(jacobian, expected)
jacfwd()可以與 vmap 組合以生成批處理的雅可比矩陣。>>> from torch.func import jacfwd, vmap >>> x = torch.randn(64, 5) >>> jacobian = vmap(jacfwd(torch.sin))(x) >>> assert jacobian.shape == (64, 5, 5)
If you would like to compute the output of the function as well as the jacobian of the function, use the
has_auxflag to return the output as an auxiliary object>>> from torch.func import jacfwd >>> x = torch.randn(5) >>> >>> def f(x): >>> return x.sin() >>> >>> def g(x): >>> result = f(x) >>> return result, result >>> >>> jacobian_f, f_x = jacfwd(g, has_aux=True)(x) >>> assert torch.allclose(f_x, f(x))
此外,
jacrev()可以與其自身或jacrev()組合以生成海森矩陣。>>> from torch.func import jacfwd, jacrev >>> def f(x): >>> return x.sin().sum() >>> >>> x = torch.randn(5) >>> hessian = jacfwd(jacrev(f))(x) >>> assert torch.allclose(hessian, torch.diag(-x.sin()))
預設情況下,
jacfwd()會計算相對於第一個輸入的雅可比矩陣。但是,您可以使用argnums來計算相對於其他引數的雅可比矩陣。>>> from torch.func import jacfwd >>> def f(x, y): >>> return x + y ** 2 >>> >>> x, y = torch.randn(5), torch.randn(5) >>> jacobian = jacfwd(f, argnums=1)(x, y) >>> expected = torch.diag(2 * y) >>> assert torch.allclose(jacobian, expected)
Additionally, passing a tuple to
argnumswill compute the Jacobian with respect to multiple arguments>>> from torch.func import jacfwd >>> def f(x, y): >>> return x + y ** 2 >>> >>> x, y = torch.randn(5), torch.randn(5) >>> jacobian = jacfwd(f, argnums=(0, 1))(x, y) >>> expectedX = torch.diag(torch.ones_like(x)) >>> expectedY = torch.diag(2 * y) >>> assert torch.allclose(jacobian[0], expectedX) >>> assert torch.allclose(jacobian[1], expectedY)