torch.gradient#
- torch.gradient(input, *, spacing=1, dim=None, edge_order=1) List of Tensors#
使用 二階精度中心差分法 和一階或二階的邊界估計,來估算函式 。
梯度的計算是基於取樣點進行的。預設情況下,當未指定
spacing時,取樣點完全由input決定,並且輸入座標到輸出的對映與張量索引到值的對映相同。例如,對於一個三維input,所描述的函式為 ,並且 。當指定
spacing時,它會修改input和輸入座標之間的關係。這將在下面的“關鍵字引數”部分詳細說明。梯度的計算方法是獨立估算 的每個偏導數。如果 屬於 (即具有至少 3 個連續導數),則此估算準確。透過提供更接近的取樣點可以改進估算。數學上,每個內部點的偏導數使用 帶有餘項的泰勒定理 進行估算。令 為一個內部點,其左側和右側的相鄰點分別為 和 ,那麼 和 可以使用以下公式估算:
利用 這一事實,並求解線性方程組,我們得到:
注意
我們以同樣的方式估算複數域函式 的梯度。
邊界點處每個偏導數的值計算方式不同。請參見下面的
edge_order。- 引數
input (
Tensor) – 代表函式值的張量- 關鍵字引數
spacing (
scalar,list of scalar,list of Tensor, optional) –spacing用於修改input張量的索引與取樣座標之間的關係。如果spacing是一個標量,則索引乘以該標量以產生座標。例如,如果spacing=2,則索引 (1, 2, 3) 變為座標 (2, 4, 6)。如果spacing是一個標量列表,則將相應的索引相乘。例如,如果spacing=(2, -1, 3),則索引 (1, 2, 3) 變為座標 (2, -2, 9)。最後,如果spacing是一個一維張量列表,則每個張量指定對應維度的座標。例如,如果索引是 (1, 2, 3) 並且張量是 (t0, t1, t2),則座標為 (t0[1], t1[2], t2[3])。dim (
int,list of int, optional) – 近似梯度的維度或維度。預設情況下,計算每個維度的偏導數。請注意,當指定dim時,spacing引數的元素必須與指定的dim相對應。edge_order (
int, optional) – 1 或 2,分別用於邊界(“edge”)值的 一階 或 二階 估算。請注意,當指定edge_order時,input的每個維度大小應至少為 edge_order+1。
示例
>>> # Estimates the gradient of f(x)=x^2 at points [-2, -1, 2, 4] >>> coordinates = (torch.tensor([-2., -1., 1., 4.]),) >>> values = torch.tensor([4., 1., 1., 16.], ) >>> torch.gradient(values, spacing = coordinates) (tensor([-3., -2., 2., 5.]),) >>> # Estimates the gradient of the R^2 -> R function whose samples are >>> # described by the tensor t. Implicit coordinates are [0, 1] for the outermost >>> # dimension and [0, 1, 2, 3] for the innermost dimension, and function estimates >>> # partial derivative for both dimensions. >>> t = torch.tensor([[1, 2, 4, 8], [10, 20, 40, 80]]) >>> torch.gradient(t) (tensor([[ 9., 18., 36., 72.], [ 9., 18., 36., 72.]]), tensor([[ 1.0000, 1.5000, 3.0000, 4.0000], [10.0000, 15.0000, 30.0000, 40.0000]])) >>> # A scalar value for spacing modifies the relationship between tensor indices >>> # and input coordinates by multiplying the indices to find the >>> # coordinates. For example, below the indices of the innermost >>> # 0, 1, 2, 3 translate to coordinates of [0, 2, 4, 6], and the indices of >>> # the outermost dimension 0, 1 translate to coordinates of [0, 2]. >>> torch.gradient(t, spacing = 2.0) # dim = None (implicitly [0, 1]) (tensor([[ 4.5000, 9.0000, 18.0000, 36.0000], [ 4.5000, 9.0000, 18.0000, 36.0000]]), tensor([[ 0.5000, 0.7500, 1.5000, 2.0000], [ 5.0000, 7.5000, 15.0000, 20.0000]])) >>> # doubling the spacing between samples halves the estimated partial gradients. >>> >>> # Estimates only the partial derivative for dimension 1 >>> torch.gradient(t, dim = 1) # spacing = None (implicitly 1.) (tensor([[ 1.0000, 1.5000, 3.0000, 4.0000], [10.0000, 15.0000, 30.0000, 40.0000]]),) >>> # When spacing is a list of scalars, the relationship between the tensor >>> # indices and input coordinates changes based on dimension. >>> # For example, below, the indices of the innermost dimension 0, 1, 2, 3 translate >>> # to coordinates of [0, 3, 6, 9], and the indices of the outermost dimension >>> # 0, 1 translate to coordinates of [0, 2]. >>> torch.gradient(t, spacing = [3., 2.]) (tensor([[ 4.5000, 9.0000, 18.0000, 36.0000], [ 4.5000, 9.0000, 18.0000, 36.0000]]), tensor([[ 0.3333, 0.5000, 1.0000, 1.3333], [ 3.3333, 5.0000, 10.0000, 13.3333]])) >>> # The following example is a replication of the previous one with explicit >>> # coordinates. >>> coords = (torch.tensor([0, 2]), torch.tensor([0, 3, 6, 9])) >>> torch.gradient(t, spacing = coords) (tensor([[ 4.5000, 9.0000, 18.0000, 36.0000], [ 4.5000, 9.0000, 18.0000, 36.0000]]), tensor([[ 0.3333, 0.5000, 1.0000, 1.3333], [ 3.3333, 5.0000, 10.0000, 13.3333]]))