torch.autograd.function.FunctionCtx.mark_dirty#
- FunctionCtx.mark_dirty(*args)[source]#
將給定張量標記為在就地操作中已修改。
此函式最多應呼叫一次,可以在
setup_context()或forward()方法中呼叫,並且所有引數都應該是輸入。在呼叫
forward()時,任何被原地修改的張量都應傳遞給此函式,以確保我們的檢查正確性。函式是在修改之前還是之後呼叫並不重要。- 示例:
>>> class Inplace(Function): >>> @staticmethod >>> def forward(ctx, x): >>> x_npy = x.numpy() # x_npy shares storage with x >>> x_npy += 1 >>> ctx.mark_dirty(x) >>> return x >>> >>> @staticmethod >>> @once_differentiable >>> def backward(ctx, grad_output): >>> return grad_output >>> >>> a = torch.tensor(1., requires_grad=True, dtype=torch.double).clone() >>> b = a * a >>> Inplace.apply(a) # This would lead to wrong gradients! >>> # but the engine would not know unless we mark_dirty >>> b.backward() # RuntimeError: one of the variables needed for gradient >>> # computation has been modified by an inplace operation