LSTM#
- class torch.ao.nn.quantizable.LSTM(input_size, hidden_size, num_layers=1, bias=True, batch_first=False, dropout=0.0, bidirectional=False, device=None, dtype=None, *, split_gates=False)[原始碼]#
可量化的長短期記憶(LSTM)模型。
有關描述和引數型別,請參閱
LSTM- 變數
layers – _LSTMLayer 的例項
注意
要訪問權重和偏置,您需要按層訪問它們。請參閱下面的示例。
示例
>>> import torch.ao.nn.quantizable as nnqa >>> rnn = nnqa.LSTM(10, 20, 2) >>> input = torch.randn(5, 3, 10) >>> h0 = torch.randn(2, 3, 20) >>> c0 = torch.randn(2, 3, 20) >>> output, (hn, cn) = rnn(input, (h0, c0)) >>> # To get the weights: >>> print(rnn.layers[0].weight_ih) tensor([[...]]) >>> print(rnn.layers[0].weight_hh) AssertionError: There is no reverse path in the non-bidirectional layer