torch.Tensor.requires_grad_#
- Tensor.requires_grad_(requires_grad=True) Tensor#
更改 autograd 是否應記錄此張量的操作:就地設定此張量的
requires_grad屬性。返回此張量。requires_grad_()的主要用例是告知 autograd 開始記錄對張量tensor的操作。如果tensor的requires_grad=False(因為它可能是透過 DataLoader 獲取的,或者需要預處理或初始化),那麼tensor.requires_grad_()將會使 autograd 開始記錄對tensor的操作。- 引數
requires_grad (bool) – autograd 是否應記錄此張量的操作。預設為
True。
示例
>>> # Let's say we want to preprocess some saved weights and use >>> # the result as new weights. >>> saved_weights = [0.1, 0.2, 0.3, 0.25] >>> loaded_weights = torch.tensor(saved_weights) >>> weights = preprocess(loaded_weights) # some function >>> weights tensor([-0.5503, 0.4926, -2.1158, -0.8303]) >>> # Now, start to record operations done to weights >>> weights.requires_grad_() >>> out = weights.pow(2).sum() >>> out.backward() >>> weights.grad tensor([-1.1007, 0.9853, -4.2316, -1.6606])