使用 PyTorch 示例進行學習#
建立時間:2017 年 3 月 24 日 | 最後更新:2025 年 9 月 29 日 | 最後驗證:2024 年 11 月 05 日
注意
這是我們較早的 PyTorch 教程之一。您可以在 基礎知識學習 中檢視我們最新的入門內容。
本教程透過獨立的示例介紹 PyTorch 的基本概念。
PyTorch 的核心功能提供兩項主要功能:
一個 n 維張量 (Tensor),類似於 numpy,但可以在 GPU 上執行
用於構建和訓練神經網路的自動微分
我們將使用擬合 \(y=\sin(x)\) 與三階多項式的任務作為我們的貫穿示例。該網路將有四個引數,並將使用梯度下降來擬合隨機資料,方法是最小化網路輸出與真實輸出之間的歐幾里得距離。
注意
您可以在 本頁末尾 檢視各個示例。
要執行以下教程,請確保您已安裝 torch 和 numpy 包。
張量#
預熱:numpy#
在介紹 PyTorch 之前,我們將首先使用 numpy 實現網路。
Numpy 提供了一個 n 維陣列物件,以及許多操作這些陣列的函式。Numpy 是一個通用的科學計算框架;它不瞭解計算圖、深度學習或梯度。但是,我們可以輕鬆地使用 numpy 透過手動實現網路的前向和後向傳播(使用 numpy 操作)來擬合正弦函式的三階多項式。
# -*- coding: utf-8 -*-
import numpy as np
import math
# Create random input and output data
x = np.linspace(-math.pi, math.pi, 2000)
y = np.sin(x)
# Randomly initialize weights
a = np.random.randn()
b = np.random.randn()
c = np.random.randn()
d = np.random.randn()
learning_rate = 1e-6
for t in range(2000):
# Forward pass: compute predicted y
# y = a + b x + c x^2 + d x^3
y_pred = a + b * x + c * x ** 2 + d * x ** 3
# Compute and print loss
loss = np.square(y_pred - y).sum()
if t % 100 == 99:
print(t, loss)
# Backprop to compute gradients of a, b, c, d with respect to loss
grad_y_pred = 2.0 * (y_pred - y)
grad_a = grad_y_pred.sum()
grad_b = (grad_y_pred * x).sum()
grad_c = (grad_y_pred * x ** 2).sum()
grad_d = (grad_y_pred * x ** 3).sum()
# Update weights
a -= learning_rate * grad_a
b -= learning_rate * grad_b
c -= learning_rate * grad_c
d -= learning_rate * grad_d
print(f'Result: y = {a} + {b} x + {c} x^2 + {d} x^3')
PyTorch:張量#
Numpy 是一個很棒的框架,但它無法利用 GPU 來加速其數值計算。對於現代深度神經網路,GPU 通常能提供 50 倍或更高的速度提升,因此不幸的是,numpy 對於現代深度學習來說不足夠。
這裡我們介紹最基本的 PyTorch 概念:張量 (Tensor)。PyTorch 張量在概念上與 numpy 陣列相同:張量是一個 n 維陣列,PyTorch 提供了許多操作這些張量的函式。在後臺,張量可以跟蹤計算圖和梯度,但它們也可用作科學計算的通用工具。
與 numpy 不同,PyTorch 張量還可以利用 GPU 來加速其數值計算。要在一臺 GPU 上執行 PyTorch 張量,您只需指定正確的裝置。
這裡我們使用 PyTorch 張量來擬合正弦函式的三階多項式。與上面的 numpy 示例一樣,我們需要手動實現網路的前向和後向傳播。
# -*- coding: utf-8 -*-
import torch
import math
dtype = torch.float
device = torch.device("cpu")
# device = torch.device("cuda:0") # Uncomment this to run on GPU
# Create random input and output data
x = torch.linspace(-math.pi, math.pi, 2000, device=device, dtype=dtype)
y = torch.sin(x)
# Randomly initialize weights
a = torch.randn((), device=device, dtype=dtype)
b = torch.randn((), device=device, dtype=dtype)
c = torch.randn((), device=device, dtype=dtype)
d = torch.randn((), device=device, dtype=dtype)
learning_rate = 1e-6
for t in range(2000):
# Forward pass: compute predicted y
y_pred = a + b * x + c * x ** 2 + d * x ** 3
# Compute and print loss
loss = (y_pred - y).pow(2).sum().item()
if t % 100 == 99:
print(t, loss)
# Backprop to compute gradients of a, b, c, d with respect to loss
grad_y_pred = 2.0 * (y_pred - y)
grad_a = grad_y_pred.sum()
grad_b = (grad_y_pred * x).sum()
grad_c = (grad_y_pred * x ** 2).sum()
grad_d = (grad_y_pred * x ** 3).sum()
# Update weights using gradient descent
a -= learning_rate * grad_a
b -= learning_rate * grad_b
c -= learning_rate * grad_c
d -= learning_rate * grad_d
print(f'Result: y = {a.item()} + {b.item()} x + {c.item()} x^2 + {d.item()} x^3')
Autograd#
PyTorch:張量和 autograd#
在上面的示例中,我們必須手動實現神經網路的前向和後向傳播。手動實現後向傳播對於一個小型兩層網路來說不算什麼,但對於大型複雜網路來說,它會變得非常混亂。
值得慶幸的是,我們可以使用 自動微分 來自動計算神經網路中的後向傳播。PyTorch 中的 autograd 包正是提供了這項功能。在使用 autograd 時,網路的正向傳播將定義一個計算圖;圖中的節點將是張量,邊將是生成輸出張量(從輸入張量)的函式。透過該圖進行反向傳播就可以輕鬆計算梯度。
這聽起來很複雜,但實際上使用起來相當簡單。每個張量代表計算圖中的一個節點。如果 x 是一個張量,並且 x.requires_grad=True,那麼 x.grad 是另一個張量,它儲存了 x 相對於某個標量值的梯度。
這裡我們使用 PyTorch 張量和 autograd 來實現擬合正弦波與三階多項式的示例;現在我們不再需要手動實現網路的反向傳播了。
rimport torch
import math
# We want to be able to train our model on an `accelerator <https://pytorch.com.tw/docs/stable/torch.html#accelerators>`__
# such as CUDA, MPS, MTIA, or XPU. If the current accelerator is available, we will use it. Otherwise, we use the CPU.
dtype = torch.float
device = torch.accelerator.current_accelerator().type if torch.accelerator.is_available() else "cpu"
print(f"Using {device} device")
torch.set_default_device(device)
# Create Tensors to hold input and outputs.
# By default, requires_grad=False, which indicates that we do not need to
# compute gradients with respect to these Tensors during the backward pass.
x = torch.linspace(-1, 1, 2000, dtype=dtype)
y = torch.exp(x) # A Taylor expansion would be 1 + x + (1/2) x**2 + (1/3!) x**3 + ...
# Create random Tensors for weights. For a third order polynomial, we need
# 4 weights: y = a + b x + c x^2 + d x^3
# Setting requires_grad=True indicates that we want to compute gradients with
# respect to these Tensors during the backward pass.
a = torch.randn((), dtype=dtype, requires_grad=True)
b = torch.randn((), dtype=dtype, requires_grad=True)
c = torch.randn((), dtype=dtype, requires_grad=True)
d = torch.randn((), dtype=dtype, requires_grad=True)
initial_loss = 1.
learning_rate = 1e-5
for t in range(5000):
# Forward pass: compute predicted y using operations on Tensors.
y_pred = a + b * x + c * x ** 2 + d * x ** 3
# Compute and print loss using operations on Tensors.
# Now loss is a Tensor of shape (1,)
# loss.item() gets the scalar value held in the loss.
loss = (y_pred - y).pow(2).sum()
# Calculare initial loss, so we can report loss relative to it
if t==0:
initial_loss=loss.item()
if t % 100 == 99:
print(f'Iteration t = {t:4d} loss(t)/loss(0) = {round(loss.item()/initial_loss, 6):10.6f} a = {a.item():10.6f} b = {b.item():10.6f} c = {c.item():10.6f} d = {d.item():10.6f}')
# Use autograd to compute the backward pass. This call will compute the
# gradient of loss with respect to all Tensors with requires_grad=True.
# After this call a.grad, b.grad. c.grad and d.grad will be Tensors holding
# the gradient of the loss with respect to a, b, c, d respectively.
loss.backward()
# Manually update weights using gradient descent. Wrap in torch.no_grad()
# because weights have requires_grad=True, but we don't need to track this
# in autograd.
with torch.no_grad():
a -= learning_rate * a.grad
b -= learning_rate * b.grad
c -= learning_rate * c.grad
d -= learning_rate * d.grad
# Manually zero the gradients after updating weights
a.grad = None
b.grad = None
c.grad = None
d.grad = None
print(f'Result: y = {a.item()} + {b.item()} x + {c.item()} x^2 + {d.item()} x^3')
PyTorch:定義新的 autograd 函式#
在底層,每個原始 autograd 運算子實際上是兩個操作張量的函式。forward 函式根據輸入張量計算輸出張量。backward 函式接收輸出張量相對於某個標量值的梯度,並計算輸入張量相對於該相同標量值的梯度。
在 PyTorch 中,我們可以透過定義 torch.autograd.Function 的子類並實現 forward 和 backward 函式來輕鬆定義我們自己的 autograd 運算子。然後,我們可以透過構造一個例項並像呼叫函式一樣呼叫它(傳遞包含輸入資料的張量)來使用我們新的 autograd 運算子。
在此示例中,我們將模型定義為 \(y=a+b P_3(c+dx)\) 而不是 \(y=a+bx+cx^2+dx^3\),其中 \(P_3(x)=\frac{1}{2}\left(5x^3-3x\right)\) 是三階 勒讓德多項式。我們為計算 \(P_3\) 的前向和後向編寫了自己的自定義 autograd 函式,並使用它來實現我們的模型。
import torch
import math
class LegendrePolynomial3(torch.autograd.Function):
"""
We can implement our own custom autograd Functions by subclassing
torch.autograd.Function and implementing the forward and backward passes
which operate on Tensors.
"""
@staticmethod
def forward(ctx, input):
"""
In the forward pass we receive a Tensor containing the input and return
a Tensor containing the output. ctx is a context object that can be used
to stash information for backward computation. You can cache tensors for
use in the backward pass using the ``ctx.save_for_backward`` method. Other
objects can be stored directly as attributes on the ctx object, such as
``ctx.my_object = my_object``. Check out `Extending torch.autograd <https://docs.pytorch.com.tw/docs/stable/notes/extending.html#extending-torch-autograd>`_
for further details.
"""
ctx.save_for_backward(input)
return 0.5 * (5 * input ** 3 - 3 * input)
@staticmethod
def backward(ctx, grad_output):
"""
In the backward pass we receive a Tensor containing the gradient of the loss
with respect to the output, and we need to compute the gradient of the loss
with respect to the input.
"""
input, = ctx.saved_tensors
return grad_output * 1.5 * (5 * input ** 2 - 1)
dtype = torch.float
device = torch.device("cpu")
# device = torch.device("cuda:0") # Uncomment this to run on GPU
# Create Tensors to hold input and outputs.
# By default, requires_grad=False, which indicates that we do not need to
# compute gradients with respect to these Tensors during the backward pass.
x = torch.linspace(-math.pi, math.pi, 2000, device=device, dtype=dtype)
y = torch.sin(x)
# Create random Tensors for weights. For this example, we need
# 4 weights: y = a + b * P3(c + d * x), these weights need to be initialized
# not too far from the correct result to ensure convergence.
# Setting requires_grad=True indicates that we want to compute gradients with
# respect to these Tensors during the backward pass.
a = torch.full((), 0.0, device=device, dtype=dtype, requires_grad=True)
b = torch.full((), -1.0, device=device, dtype=dtype, requires_grad=True)
c = torch.full((), 0.0, device=device, dtype=dtype, requires_grad=True)
d = torch.full((), 0.3, device=device, dtype=dtype, requires_grad=True)
learning_rate = 5e-6
for t in range(2000):
# To apply our Function, we use Function.apply method. We alias this as 'P3'.
P3 = LegendrePolynomial3.apply
# Forward pass: compute predicted y using operations; we compute
# P3 using our custom autograd operation.
y_pred = a + b * P3(c + d * x)
# Compute and print loss
loss = (y_pred - y).pow(2).sum()
if t % 100 == 99:
print(t, loss.item())
# Use autograd to compute the backward pass.
loss.backward()
# Update weights using gradient descent
with torch.no_grad():
a -= learning_rate * a.grad
b -= learning_rate * b.grad
c -= learning_rate * c.grad
d -= learning_rate * d.grad
# Manually zero the gradients after updating weights
a.grad = None
b.grad = None
c.grad = None
d.grad = None
print(f'Result: y = {a.item()} + {b.item()} * P3({c.item()} + {d.item()} x)')
nn 模組#
PyTorch:nn#
計算圖和 autograd 是定義複雜運算子和自動求導的非常強大的範例;但是,對於大型神經網路來說,原始 autograd 可能有點過於底層。
在構建神經網路時,我們經常會想到將計算組織成層,其中一些層具有可學習引數,這些引數將在學習過程中進行最佳化。
在 TensorFlow 中,像 Keras、TensorFlow-Slim 和 TFLearn 這樣的包提供了比原始計算圖更高級別的抽象,這些抽象對於構建神經網路很有用。
在 PyTorch 中,nn 包承擔了相同的目的。 nn 包定義了一組模組 (Modules),它們大致相當於神經網路層。一個模組接收輸入張量並計算輸出張量,但它也可能包含內部狀態,例如包含可學習引數的張量。 nn 包還定義了一組在訓練神經網路時常用的有用的損失函式。
在此示例中,我們使用 nn 包來實現我們的多項式模型網路。
# -*- coding: utf-8 -*-
import torch
import math
# Create Tensors to hold input and outputs.
x = torch.linspace(-math.pi, math.pi, 2000)
y = torch.sin(x)
# For this example, the output y is a linear function of (x, x^2, x^3), so
# we can consider it as a linear layer neural network. Let's prepare the
# tensor (x, x^2, x^3).
p = torch.tensor([1, 2, 3])
xx = x.unsqueeze(-1).pow(p)
# In the above code, x.unsqueeze(-1) has shape (2000, 1), and p has shape
# (3,), for this case, broadcasting semantics will apply to obtain a tensor
# of shape (2000, 3)
# Use the nn package to define our model as a sequence of layers. nn.Sequential
# is a Module which contains other Modules, and applies them in sequence to
# produce its output. The Linear Module computes output from input using a
# linear function, and holds internal Tensors for its weight and bias.
# The Flatten layer flatens the output of the linear layer to a 1D tensor,
# to match the shape of `y`.
model = torch.nn.Sequential(
torch.nn.Linear(3, 1),
torch.nn.Flatten(0, 1)
)
# The nn package also contains definitions of popular loss functions; in this
# case we will use Mean Squared Error (MSE) as our loss function.
loss_fn = torch.nn.MSELoss(reduction='sum')
learning_rate = 1e-6
for t in range(2000):
# Forward pass: compute predicted y by passing x to the model. Module objects
# override the __call__ operator so you can call them like functions. When
# doing so you pass a Tensor of input data to the Module and it produces
# a Tensor of output data.
y_pred = model(xx)
# Compute and print loss. We pass Tensors containing the predicted and true
# values of y, and the loss function returns a Tensor containing the
# loss.
loss = loss_fn(y_pred, y)
if t % 100 == 99:
print(t, loss.item())
# Zero the gradients before running the backward pass.
model.zero_grad()
# Backward pass: compute gradient of the loss with respect to all the learnable
# parameters of the model. Internally, the parameters of each Module are stored
# in Tensors with requires_grad=True, so this call will compute gradients for
# all learnable parameters in the model.
loss.backward()
# Update the weights using gradient descent. Each parameter is a Tensor, so
# we can access its gradients like we did before.
with torch.no_grad():
for param in model.parameters():
param -= learning_rate * param.grad
# You can access the first layer of `model` like accessing the first item of a list
linear_layer = model[0]
# For linear layer, its parameters are stored as `weight` and `bias`.
print(f'Result: y = {linear_layer.bias.item()} + {linear_layer.weight[:, 0].item()} x + {linear_layer.weight[:, 1].item()} x^2 + {linear_layer.weight[:, 2].item()} x^3')
PyTorch:optim#
到目前為止,我們已經透過使用 torch.no_grad() 手動修改了儲存可學習引數的張量來更新模型的權重。對於隨機梯度下降等簡單的最佳化演算法來說,這不算什麼大麻煩,但在實踐中,我們經常使用更復雜的最佳化器來訓練神經網路,例如 AdaGrad、RMSProp、Adam 等。
PyTorch 中的 optim 包抽象了最佳化演算法的概念,並提供了常用最佳化演算法的實現。
在此示例中,我們將像以前一樣使用 nn 包來定義我們的模型,但我們將使用 optim 包提供的 RMSprop 演算法來最佳化模型。
# -*- coding: utf-8 -*-
import torch
import math
# Create Tensors to hold input and outputs.
x = torch.linspace(-math.pi, math.pi, 2000)
y = torch.sin(x)
# Prepare the input tensor (x, x^2, x^3).
p = torch.tensor([1, 2, 3])
xx = x.unsqueeze(-1).pow(p)
# Use the nn package to define our model and loss function.
model = torch.nn.Sequential(
torch.nn.Linear(3, 1),
torch.nn.Flatten(0, 1)
)
loss_fn = torch.nn.MSELoss(reduction='sum')
# Use the optim package to define an Optimizer that will update the weights of
# the model for us. Here we will use RMSprop; the optim package contains many other
# optimization algorithms. The first argument to the RMSprop constructor tells the
# optimizer which Tensors it should update.
learning_rate = 1e-3
optimizer = torch.optim.RMSprop(model.parameters(), lr=learning_rate)
for t in range(2000):
# Forward pass: compute predicted y by passing x to the model.
y_pred = model(xx)
# Compute and print loss.
loss = loss_fn(y_pred, y)
if t % 100 == 99:
print(t, loss.item())
# Before the backward pass, use the optimizer object to zero all of the
# gradients for the variables it will update (which are the learnable
# weights of the model). This is because by default, gradients are
# accumulated in buffers( i.e, not overwritten) whenever .backward()
# is called. Checkout docs of torch.autograd.backward for more details.
optimizer.zero_grad()
# Backward pass: compute gradient of the loss with respect to model
# parameters
loss.backward()
# Calling the step function on an Optimizer makes an update to its
# parameters
optimizer.step()
linear_layer = model[0]
print(f'Result: y = {linear_layer.bias.item()} + {linear_layer.weight[:, 0].item()} x + {linear_layer.weight[:, 1].item()} x^2 + {linear_layer.weight[:, 2].item()} x^3')
PyTorch:自定義 nn 模組#
有時您會想定義比現有模組序列更復雜的模型;對於這些情況,您可以將自己的模組定義為 nn.Module 的子類,並定義一個 forward 方法,該方法接收輸入張量並使用其他模組或其他張量上的 autograd 操作生成輸出張量。
在此示例中,我們將我們的三階多項式實現為一個自定義模組子類。
# -*- coding: utf-8 -*-
import torch
import math
class Polynomial3(torch.nn.Module):
def __init__(self):
"""
In the constructor we instantiate four parameters and assign them as
member parameters.
"""
super().__init__()
self.a = torch.nn.Parameter(torch.randn(()))
self.b = torch.nn.Parameter(torch.randn(()))
self.c = torch.nn.Parameter(torch.randn(()))
self.d = torch.nn.Parameter(torch.randn(()))
def forward(self, x):
"""
In the forward function we accept a Tensor of input data and we must return
a Tensor of output data. We can use Modules defined in the constructor as
well as arbitrary operators on Tensors.
"""
return self.a + self.b * x + self.c * x ** 2 + self.d * x ** 3
def string(self):
"""
Just like any class in Python, you can also define custom method on PyTorch modules
"""
return f'y = {self.a.item()} + {self.b.item()} x + {self.c.item()} x^2 + {self.d.item()} x^3'
# Create Tensors to hold input and outputs.
x = torch.linspace(-math.pi, math.pi, 2000)
y = torch.sin(x)
# Construct our model by instantiating the class defined above
model = Polynomial3()
# Construct our loss function and an Optimizer. The call to model.parameters()
# in the SGD constructor will contain the learnable parameters (defined
# with torch.nn.Parameter) which are members of the model.
criterion = torch.nn.MSELoss(reduction='sum')
optimizer = torch.optim.SGD(model.parameters(), lr=1e-6)
for t in range(2000):
# Forward pass: Compute predicted y by passing x to the model
y_pred = model(x)
# Compute and print loss
loss = criterion(y_pred, y)
if t % 100 == 99:
print(t, loss.item())
# Zero gradients, perform a backward pass, and update the weights.
optimizer.zero_grad()
loss.backward()
optimizer.step()
print(f'Result: {model.string()}')
PyTorch:控制流 + 權重共享#
作為動態圖和權重共享的一個示例,我們實現了一個非常奇怪的模型:一個三到五階的多項式,它在每次前向傳播時選擇一個介於 3 和 5 之間的隨機數並使用該階數,多次重用相同的權重來計算四階和五階。
對於這個模型,我們可以使用普通的 Python 控制流來實現迴圈,並且可以透過在定義前向傳播時簡單地多次重用相同的引數來實現權重共享。
我們可以輕鬆地將此模型實現為模組子類。
# -*- coding: utf-8 -*-
import random
import torch
import math
class DynamicNet(torch.nn.Module):
def __init__(self):
"""
In the constructor we instantiate five parameters and assign them as members.
"""
super().__init__()
self.a = torch.nn.Parameter(torch.randn(()))
self.b = torch.nn.Parameter(torch.randn(()))
self.c = torch.nn.Parameter(torch.randn(()))
self.d = torch.nn.Parameter(torch.randn(()))
self.e = torch.nn.Parameter(torch.randn(()))
def forward(self, x):
"""
For the forward pass of the model, we randomly choose either 4, 5
and reuse the e parameter to compute the contribution of these orders.
Since each forward pass builds a dynamic computation graph, we can use normal
Python control-flow operators like loops or conditional statements when
defining the forward pass of the model.
Here we also see that it is perfectly safe to reuse the same parameter many
times when defining a computational graph.
"""
y = self.a + self.b * x + self.c * x ** 2 + self.d * x ** 3
for exp in range(4, random.randint(4, 6)):
y = y + self.e * x ** exp
return y
def string(self):
"""
Just like any class in Python, you can also define custom method on PyTorch modules
"""
return f'y = {self.a.item()} + {self.b.item()} x + {self.c.item()} x^2 + {self.d.item()} x^3 + {self.e.item()} x^4 ? + {self.e.item()} x^5 ?'
# Create Tensors to hold input and outputs.
x = torch.linspace(-math.pi, math.pi, 2000)
y = torch.sin(x)
# Construct our model by instantiating the class defined above
model = DynamicNet()
# Construct our loss function and an Optimizer. Training this strange model with
# vanilla stochastic gradient descent is tough, so we use momentum
criterion = torch.nn.MSELoss(reduction='sum')
optimizer = torch.optim.SGD(model.parameters(), lr=1e-8, momentum=0.9)
for t in range(30000):
# Forward pass: Compute predicted y by passing x to the model
y_pred = model(x)
# Compute and print loss
loss = criterion(y_pred, y)
if t % 2000 == 1999:
print(t, loss.item())
# Zero gradients, perform a backward pass, and update the weights.
optimizer.zero_grad()
loss.backward()
optimizer.step()
print(f'Result: {model.string()}')
示例#
您可以在此處瀏覽上面的示例。