JumanjiWrapper¶
- torchrl.envs.JumanjiWrapper(*args, **kwargs)[原始碼]¶
Jumanji 的環境包裝器。
Jumanji 提供了一個基於 Jax 的向量化模擬框架。TorchRL 的包裝器會產生一些用於 jax 到 torch 轉換的開銷,但計算圖仍然可以在模擬軌跡之上構建,從而允許透過回滾進行反向傳播。
GitHub: https://github.com/instadeepai/jumanji
文件: https://instadeepai.github.io/jumanji/
論文: https://arxiv.org/abs/2306.09884
注意
為了獲得更好的效能,在例項化此類時請開啟 jit。在程式碼執行期間也可以切換 jit 屬性。
>>> env.jit = True # Used jit >>> env.jit = False # eager
- 引數:
env (jumanji.env.Environment) – 要包裝的環境。
categorical_action_encoding (bool, optional) – 如果為
True,則分類規範將轉換為 TorchRL 等效項 (torchrl.data.Categorical),否則將使用獨熱編碼 (torchrl.data.OneHot)。預設為False。
- 關鍵字引數:
batch_size (torch.Size, 可選) –
環境的批次大小。使用
jumanji時,這表示向量化環境的數量。如果批次大小為空,則環境不是批次鎖定的,可以同時執行任意數量的環境。預設為torch.Size([])。>>> import jumanji >>> from torchrl.envs import JumanjiWrapper >>> base_env = jumanji.make("Snake-v1") >>> env = JumanjiWrapper(base_env) >>> # Set the batch-size of the TensorDict instead of the env allows to control the number >>> # of envs being run simultaneously >>> tdreset = env.reset(TensorDict(batch_size=[32])) >>> # Execute a rollout until all envs are done or max steps is reached, whichever comes first >>> rollout = env.rollout(100, break_when_all_done=True, auto_reset=False, tensordict=tdreset)
from_pixels (bool, 可選) – 環境是否應渲染其輸出。這將對環境吞吐量產生重大影響。只會渲染第一個環境。有關更多資訊,請參閱
render()。預設為 False。frame_skip (int, optional) – 如果提供,表示相同的動作需要重複多少步。返回的觀察值將是序列的最後一個觀察值,而獎勵將是跨步驟的獎勵總和。
device (torch.device, optional) – 如果提供,資料將被轉換到的裝置。預設為
torch.device("cpu")。allow_done_after_reset (bool, optional) – 如果為
True,則允許在呼叫reset()後立即將環境設定為done。預設為False。jit (bool, 可選) – step 和 reset 方法是否應包裝在 jit 中。預設為
False。
- 變數:
available_envs – 可用於構建的環境
示例
>>> import jumanji >>> from torchrl.envs import JumanjiWrapper >>> base_env = jumanji.make("Snake-v1") >>> env = JumanjiWrapper(base_env) >>> env.set_seed(0) >>> td = env.reset() >>> td["action"] = env.action_spec.rand() >>> td = env.step(td) >>> print(td) TensorDict( fields={ action: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.int32, is_shared=False), action_mask: Tensor(shape=torch.Size([4]), device=cpu, dtype=torch.bool, is_shared=False), done: Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.bool, is_shared=False), grid: Tensor(shape=torch.Size([12, 12, 5]), device=cpu, dtype=torch.float32, is_shared=False), next: TensorDict( fields={ action_mask: Tensor(shape=torch.Size([4]), device=cpu, dtype=torch.bool, is_shared=False), done: Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.bool, is_shared=False), grid: Tensor(shape=torch.Size([12, 12, 5]), device=cpu, dtype=torch.float32, is_shared=False), reward: Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.float32, is_shared=False), state: TensorDict( fields={ action_mask: Tensor(shape=torch.Size([4]), device=cpu, dtype=torch.bool, is_shared=False), body: Tensor(shape=torch.Size([12, 12]), device=cpu, dtype=torch.bool, is_shared=False), body_state: Tensor(shape=torch.Size([12, 12]), device=cpu, dtype=torch.int32, is_shared=False), fruit_position: TensorDict( fields={ col: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.int32, is_shared=False), row: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.int32, is_shared=False)}, batch_size=torch.Size([]), device=cpu, is_shared=False), head_position: TensorDict( fields={ col: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.int32, is_shared=False), row: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.int32, is_shared=False)}, batch_size=torch.Size([]), device=cpu, is_shared=False), key: Tensor(shape=torch.Size([2]), device=cpu, dtype=torch.int32, is_shared=False), length: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.int32, is_shared=False), step_count: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.int32, is_shared=False), tail: Tensor(shape=torch.Size([12, 12]), device=cpu, dtype=torch.bool, is_shared=False)}, batch_size=torch.Size([]), device=cpu, is_shared=False), step_count: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.int32, is_shared=False), terminated: Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.bool, is_shared=False)}, batch_size=torch.Size([]), device=cpu, is_shared=False), state: TensorDict( fields={ action_mask: Tensor(shape=torch.Size([4]), device=cpu, dtype=torch.bool, is_shared=False), body: Tensor(shape=torch.Size([12, 12]), device=cpu, dtype=torch.bool, is_shared=False), body_state: Tensor(shape=torch.Size([12, 12]), device=cpu, dtype=torch.int32, is_shared=False), fruit_position: TensorDict( fields={ col: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.int32, is_shared=False), row: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.int32, is_shared=False)}, batch_size=torch.Size([]), device=cpu, is_shared=False), head_position: TensorDict( fields={ col: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.int32, is_shared=False), row: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.int32, is_shared=False)}, batch_size=torch.Size([]), device=cpu, is_shared=False), key: Tensor(shape=torch.Size([2]), device=cpu, dtype=torch.int32, is_shared=False), length: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.int32, is_shared=False), step_count: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.int32, is_shared=False), tail: Tensor(shape=torch.Size([12, 12]), device=cpu, dtype=torch.bool, is_shared=False)}, batch_size=torch.Size([]), device=cpu, is_shared=False), step_count: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.int32, is_shared=False), terminated: Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.bool, is_shared=False)}, batch_size=torch.Size([]), device=cpu, is_shared=False) >>> print(env.available_envs) ['Game2048-v1', 'Maze-v0', 'Cleaner-v0', 'CVRP-v1', 'MultiCVRP-v0', 'Minesweeper-v0', 'RubiksCube-v0', 'Knapsack-v1', 'Sudoku-v0', 'Snake-v1', 'TSP-v1', 'Connector-v2', 'MMST-v0', 'GraphColoring-v0', 'RubiksCube-partly-scrambled-v0', 'RobotWarehouse-v0', 'Tetris-v0', 'BinPack-v2', 'Sudoku-very-easy-v0', 'JobShop-v0']
為了利用 Jumanji 的優勢,通常會同時執行多個環境。
>>> import jumanji >>> from torchrl.envs import JumanjiWrapper >>> base_env = jumanji.make("Snake-v1") >>> env = JumanjiWrapper(base_env, batch_size=[10]) >>> env.set_seed(0) >>> td = env.reset() >>> td["action"] = env.action_spec.rand() >>> td = env.step(td)
在下面的示例中,我們將迭代地測試不同的批次大小,並報告短回滾的執行時間。
示例
>>> from torch.utils.benchmark import Timer >>> for batch_size in [4, 16, 128]: ... timer = Timer( ... ''' ... env.rollout(100) ... ''', ... setup=f''' ... from torchrl.envs import JumanjiWrapper ... import jumanji ... env = JumanjiWrapper(jumanji.make('Snake-v1'), batch_size=[{batch_size}]) ... env.set_seed(0) ... env.rollout(2) ... ''') ... print(batch_size, timer.timeit(number=10)) 4 env.rollout(100) setup: [...] Median: 122.40 ms 2 measurements, 1 runs per measurement, 1 thread
16 env.rollout(100) 設定: […] 中位數: 134.39 毫秒 2 次測量,每次測量 1 次執行,1 個執行緒
128 env.rollout(100) 設定: […] 中位數: 172.31 毫秒 2 次測量,每次測量 1 次執行,1 個執行緒