快捷方式

get_primers_from_module

class torchrl.modules.utils.get_primers_from_module(module)[原始碼]

從模組的所有子模組中獲取所有 tensordict primr。

此方法有助於從包含在父模組中的模組中檢索 primers。

引數:

module (torch.nn.Module) – 父模組。

返回:

一個 TensorDictPrimer Transform。

返回型別:

TensorDictPrimer

示例

>>> from torchrl.modules.utils import get_primers_from_module
>>> from torchrl.modules import GRUModule, MLP
>>> from tensordict.nn import TensorDictModule, TensorDictSequential
>>> # Define a GRU module
>>> gru_module = GRUModule(
...     input_size=10,
...     hidden_size=10,
...     num_layers=1,
...     in_keys=["input", "recurrent_state", "is_init"],
...     out_keys=["features", ("next", "recurrent_state")],
... )
>>> # Define a head module
>>> head = TensorDictModule(
...     MLP(
...         in_features=10,
...         out_features=10,
...         num_cells=[],
...     ),
...     in_keys=["features"],
...     out_keys=["output"],
... )
>>> # Create a sequential model
>>> model = TensorDictSequential(gru_module, head)
>>> # Retrieve primers from the model
>>> primers = get_primers_from_module(model)
>>> print(primers)
TensorDictPrimer(primers=Composite(
recurrent_state: UnboundedContinuous(

shape=torch.Size([1, 10]), space=None, device=cpu, dtype=torch.float32, domain=continuous), device=None, shape=torch.Size([])), default_value={‘recurrent_state’: 0.0}, random=None)

文件

訪問全面的 PyTorch 開發者文件

檢視文件

教程

為初學者和高階開發者提供深入的教程

檢視教程

資源

查詢開發資源並讓您的問題得到解答

檢視資源