快捷方式

FiniteTensorDictCheck

class torchrl.envs.transforms.FiniteTensorDictCheck[原始碼]

此轉換將檢查 tensordict 的所有項是否都為有限值,如果不是,則會引發異常。

forward(next_tensordict: TensorDictBase) TensorDictBase

讀取輸入 tensordict,並對選定的鍵應用轉換。

預設情況下,此方法

  • 直接呼叫 _apply_transform()

  • 不呼叫 _step()_call()

此方法不會在任何時候在 env.step 中呼叫。但是,它會在 sample() 中呼叫。

注意

forward 也可以使用 dispatch 將引數名稱轉換為鍵,並使用常規關鍵字引數。

示例

>>> class TransformThatMeasuresBytes(Transform):
...     '''Measures the number of bytes in the tensordict, and writes it under `"bytes"`.'''
...     def __init__(self):
...         super().__init__(in_keys=[], out_keys=["bytes"])
...
...     def forward(self, tensordict: TensorDictBase) -> TensorDictBase:
...         bytes_in_td = tensordict.bytes()
...         tensordict["bytes"] = bytes
...         return tensordict
>>> t = TransformThatMeasuresBytes()
>>> env = env.append_transform(t) # works within envs
>>> t(TensorDict(a=0))  # Works offline too.

文件

訪問全面的 PyTorch 開發者文件

檢視文件

教程

為初學者和高階開發者提供深入的教程

檢視教程

資源

查詢開發資源並讓您的問題得到解答

檢視資源