BaseDatasetExperienceReplay¶
- class torchrl.data.datasets.BaseDatasetExperienceReplay(*, priority_key: str = 'td_error', **kwargs)[原始碼]¶
離線資料集的父類。
- add(data: TensorDictBase) int¶
將單個元素新增到重放緩衝區。
- 引數:
data (Any) – 要新增到重放緩衝區的資料
- 返回:
資料在重放緩衝區中的索引。
- append_transform(transform: Transform, *, invert: bool = False) ReplayBuffer¶
將變換附加到末尾。
呼叫 sample 時按順序應用變換。
- 引數:
transform (Transform) – 要附加的變換
- 關鍵字引數:
invert (bool, optional) – 如果為
True,則轉換將被反轉(寫入時呼叫正向呼叫,讀取時呼叫反向呼叫)。預設為False。
示例
>>> rb = ReplayBuffer(storage=LazyMemmapStorage(10), batch_size=4) >>> data = TensorDict({"a": torch.zeros(10)}, [10]) >>> def t(data): ... data += 1 ... return data >>> rb.append_transform(t, invert=True) >>> rb.extend(data) >>> assert (data == 1).all()
- classmethod as_remote(remote_config=None)¶
建立一個遠端 ray 類的例項。
- 引數:
cls (Python Class) – 要遠端例項化的類。
remote_config (dict) – 為該類保留的 CPU 核心數量。預設為 torchrl.collectors.distributed.ray.DEFAULT_REMOTE_CLASS_CONFIG。
- 返回:
一個建立 ray 遠端類例項的函式。
- property batch_size¶
重放緩衝區的批次大小。
batch_size 可以透過在
sample()方法中設定 batch_size 引數來覆蓋。它定義了
sample()返回的樣本數量以及ReplayBuffer迭代器產生的樣本數量。
- abstract property data_path: Path¶
資料集路徑,包括分割。
- abstract property data_path_root: Path¶
資料集根目錄路徑。
- dumps(path)¶
將重放緩衝區儲存到指定路徑的磁碟上。
- 引數:
path (Path 或 str) – 儲存重放緩衝區的路徑。
示例
>>> import tempfile >>> import tqdm >>> from torchrl.data import LazyMemmapStorage, TensorDictReplayBuffer >>> from torchrl.data.replay_buffers.samplers import PrioritizedSampler, RandomSampler >>> import torch >>> from tensordict import TensorDict >>> # Build and populate the replay buffer >>> S = 1_000_000 >>> sampler = PrioritizedSampler(S, 1.1, 1.0) >>> # sampler = RandomSampler() >>> storage = LazyMemmapStorage(S) >>> rb = TensorDictReplayBuffer(storage=storage, sampler=sampler) >>> >>> for _ in tqdm.tqdm(range(100)): ... td = TensorDict({"obs": torch.randn(100, 3, 4), "next": {"obs": torch.randn(100, 3, 4)}, "td_error": torch.rand(100)}, [100]) ... rb.extend(td) ... sample = rb.sample(32) ... rb.update_tensordict_priority(sample) >>> # save and load the buffer >>> with tempfile.TemporaryDirectory() as tmpdir: ... rb.dumps(tmpdir) ... ... sampler = PrioritizedSampler(S, 1.1, 1.0) ... # sampler = RandomSampler() ... storage = LazyMemmapStorage(S) ... rb_load = TensorDictReplayBuffer(storage=storage, sampler=sampler) ... rb_load.loads(tmpdir) ... assert len(rb) == len(rb_load)
- empty(empty_write_count: bool = True)¶
清空重放緩衝區並將遊標重置為 0。
- 引數:
empty_write_count (bool, optional) – 是否清空 write_count 屬性。預設為 True。
- extend(tensordicts: TensorDictBase, *, update_priority: bool | None = None) torch.Tensor¶
使用資料批次擴充套件重放緩衝區。
- 引數:
tensordicts (TensorDictBase) – 用於擴充套件重放緩衝區的資料。
- 關鍵字引數:
update_priority (bool, optional) – 是否更新資料的優先順序。預設為 True。
- 返回:
已新增到重放緩衝區的資料的索引。
- insert_transform(index: int, transform: Transform, *, invert: bool = False) ReplayBuffer¶
插入變換。
呼叫 sample 時按順序執行變換。
- 引數:
index (int) – 插入變換的位置。
transform (Transform) – 要附加的變換
- 關鍵字引數:
invert (bool, optional) – 如果為
True,則轉換將被反轉(寫入時呼叫正向呼叫,讀取時呼叫反向呼叫)。預設為False。
- loads(path)¶
在給定路徑載入重放緩衝區狀態。
Buffer 應具有匹配的元件,並使用
dumps()儲存。- 引數:
path (Path 或 str) – 重放緩衝區儲存的路徑。
有關更多資訊,請參閱
dumps()。
- next()¶
返回重放緩衝區的下一個項。
此方法用於在 __iter__ 不可用的情況下迭代重放緩衝區,例如
RayReplayBuffer。
- preprocess(fn: Callable[[TensorDictBase], TensorDictBase], dim: int = 0, num_workers: int | None = None, *, chunksize: int | None = None, num_chunks: int | None = None, pool: mp.Pool | None = None, generator: torch.Generator | None = None, max_tasks_per_child: int | None = None, worker_threads: int = 1, index_with_generator: bool = False, pbar: bool = False, mp_start_method: str | None = None, num_frames: int | None = None, dest: str | Path) TensorStorage[原始碼]¶
預處理資料集並返回一個包含格式化資料的新儲存。
資料轉換必須是單位化的(作用於資料集的單個樣本)。
Args 和 Keyword Args 會轉發給
map()。資料集之後可以使用
delete()進行刪除。- 關鍵字引數:
dest (path 或 等價物) – 新資料集位置的路徑。
num_frames (int, 可選) – 如果提供,則僅轉換前 num_frames 幀。這對於除錯轉換很有用。
返回:將在
ReplayBuffer例項中使用的新的儲存。示例
>>> from torchrl.data.datasets import MinariExperienceReplay >>> >>> data = MinariExperienceReplay( ... list(MinariExperienceReplay.available_datasets)[0], ... batch_size=32 ... ) >>> print(data) MinariExperienceReplay( storages=TensorStorage(TensorDict( fields={ action: MemoryMappedTensor(shape=torch.Size([1000000, 8]), device=cpu, dtype=torch.float32, is_shared=True), episode: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.int64, is_shared=True), info: TensorDict( fields={ distance_from_origin: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True), forward_reward: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True), goal: MemoryMappedTensor(shape=torch.Size([1000000, 2]), device=cpu, dtype=torch.float64, is_shared=True), qpos: MemoryMappedTensor(shape=torch.Size([1000000, 15]), device=cpu, dtype=torch.float64, is_shared=True), qvel: MemoryMappedTensor(shape=torch.Size([1000000, 14]), device=cpu, dtype=torch.float64, is_shared=True), reward_ctrl: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True), reward_forward: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True), reward_survive: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True), success: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.bool, is_shared=True), x_position: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True), x_velocity: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True), y_position: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True), y_velocity: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True)}, batch_size=torch.Size([1000000]), device=cpu, is_shared=False), next: TensorDict( fields={ done: MemoryMappedTensor(shape=torch.Size([1000000, 1]), device=cpu, dtype=torch.bool, is_shared=True), info: TensorDict( fields={ distance_from_origin: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True), forward_reward: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True), goal: MemoryMappedTensor(shape=torch.Size([1000000, 2]), device=cpu, dtype=torch.float64, is_shared=True), qpos: MemoryMappedTensor(shape=torch.Size([1000000, 15]), device=cpu, dtype=torch.float64, is_shared=True), qvel: MemoryMappedTensor(shape=torch.Size([1000000, 14]), device=cpu, dtype=torch.float64, is_shared=True), reward_ctrl: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True), reward_forward: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True), reward_survive: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True), success: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.bool, is_shared=True), x_position: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True), x_velocity: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True), y_position: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True), y_velocity: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True)}, batch_size=torch.Size([1000000]), device=cpu, is_shared=False), observation: TensorDict( fields={ achieved_goal: MemoryMappedTensor(shape=torch.Size([1000000, 2]), device=cpu, dtype=torch.float64, is_shared=True), desired_goal: MemoryMappedTensor(shape=torch.Size([1000000, 2]), device=cpu, dtype=torch.float64, is_shared=True), observation: MemoryMappedTensor(shape=torch.Size([1000000, 27]), device=cpu, dtype=torch.float64, is_shared=True)}, batch_size=torch.Size([1000000]), device=cpu, is_shared=False), reward: MemoryMappedTensor(shape=torch.Size([1000000, 1]), device=cpu, dtype=torch.float64, is_shared=True), terminated: MemoryMappedTensor(shape=torch.Size([1000000, 1]), device=cpu, dtype=torch.bool, is_shared=True), truncated: MemoryMappedTensor(shape=torch.Size([1000000, 1]), device=cpu, dtype=torch.bool, is_shared=True)}, batch_size=torch.Size([1000000]), device=cpu, is_shared=False), observation: TensorDict( fields={ achieved_goal: MemoryMappedTensor(shape=torch.Size([1000000, 2]), device=cpu, dtype=torch.float64, is_shared=True), desired_goal: MemoryMappedTensor(shape=torch.Size([1000000, 2]), device=cpu, dtype=torch.float64, is_shared=True), observation: MemoryMappedTensor(shape=torch.Size([1000000, 27]), device=cpu, dtype=torch.float64, is_shared=True)}, batch_size=torch.Size([1000000]), device=cpu, is_shared=False)}, batch_size=torch.Size([1000000]), device=cpu, is_shared=False)), samplers=RandomSampler, writers=ImmutableDatasetWriter(), batch_size=32, transform=Compose( ), collate_fn=<function _collate_id at 0x120e21dc0>) >>> from torchrl.envs import CatTensors, Compose >>> from tempfile import TemporaryDirectory >>> >>> cat_tensors = CatTensors( ... in_keys=[("observation", "observation"), ("observation", "achieved_goal"), ... ("observation", "desired_goal")], ... out_key="obs" ... ) >>> cat_next_tensors = CatTensors( ... in_keys=[("next", "observation", "observation"), ... ("next", "observation", "achieved_goal"), ... ("next", "observation", "desired_goal")], ... out_key=("next", "obs") ... ) >>> t = Compose(cat_tensors, cat_next_tensors) >>> >>> def func(td): ... td = td.select( ... "action", ... "episode", ... ("next", "done"), ... ("next", "observation"), ... ("next", "reward"), ... ("next", "terminated"), ... ("next", "truncated"), ... "observation" ... ) ... td = t(td) ... return td >>> with TemporaryDirectory() as tmpdir: ... new_storage = data.preprocess(func, num_workers=4, pbar=True, mp_start_method="fork", dest=tmpdir) ... rb = ReplayBuffer(storage=new_storage) ... print(rb) ReplayBuffer( storage=TensorStorage( data=TensorDict( fields={ action: MemoryMappedTensor(shape=torch.Size([1000000, 8]), device=cpu, dtype=torch.float32, is_shared=True), episode: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.int64, is_shared=True), next: TensorDict( fields={ done: MemoryMappedTensor(shape=torch.Size([1000000, 1]), device=cpu, dtype=torch.bool, is_shared=True), obs: MemoryMappedTensor(shape=torch.Size([1000000, 31]), device=cpu, dtype=torch.float64, is_shared=True), observation: TensorDict( fields={ }, batch_size=torch.Size([1000000]), device=cpu, is_shared=False), reward: MemoryMappedTensor(shape=torch.Size([1000000, 1]), device=cpu, dtype=torch.float64, is_shared=True), terminated: MemoryMappedTensor(shape=torch.Size([1000000, 1]), device=cpu, dtype=torch.bool, is_shared=True), truncated: MemoryMappedTensor(shape=torch.Size([1000000, 1]), device=cpu, dtype=torch.bool, is_shared=True)}, batch_size=torch.Size([1000000]), device=cpu, is_shared=False), obs: MemoryMappedTensor(shape=torch.Size([1000000, 31]), device=cpu, dtype=torch.float64, is_shared=True), observation: TensorDict( fields={ }, batch_size=torch.Size([1000000]), device=cpu, is_shared=False)}, batch_size=torch.Size([1000000]), device=cpu, is_shared=False), shape=torch.Size([1000000]), len=1000000, max_size=1000000), sampler=RandomSampler(), writer=RoundRobinWriter(cursor=0, full_storage=True), batch_size=None, collate_fn=<function _collate_id at 0x168406fc0>)
- register_load_hook(hook: Callable[[Any], Any])¶
為儲存註冊載入鉤子。
注意
鉤子目前不會在儲存重放緩衝區時序列化:每次建立緩衝區時都必須手動重新初始化它們。
- register_save_hook(hook: Callable[[Any], Any])¶
為儲存註冊儲存鉤子。
注意
鉤子目前不會在儲存重放緩衝區時序列化:每次建立緩衝區時都必須手動重新初始化它們。
- sample(batch_size: int | None = None, return_info: bool = False, include_info: bool | None = None) TensorDictBase¶
從重放緩衝區中取樣資料批次。
使用 Sampler 取樣索引,並從 Storage 中檢索它們。
- 引數:
batch_size (int, optional) – 要收集的資料的大小。如果未提供,此方法將取樣由取樣器指示的批次大小。
return_info (bool) – 是否返回資訊。如果為 True,則結果為元組 (data, info)。如果為 False,則結果為資料。
- 返回:
一個包含在重放緩衝區中選擇的資料批次的 tensordict。如果 return_info 標誌設定為 True,則包含此 tensordict 和資訊的元組。
- set_storage(storage: Storage, collate_fn: Callable | None = None)¶
在重放緩衝區中設定新的儲存並返回之前的儲存。
- 引數:
storage (Storage) – 緩衝區的新的儲存。
collate_fn (callable, optional) – 如果提供,collate_fn 將設定為此值。否則,它將被重置為預設值。
- property write_count: int¶
透過 add 和 extend 寫入緩衝區的總項數。