AtariDQNExperienceReplay¶
- class torchrl.data.datasets.AtariDQNExperienceReplay(dataset_id: str, batch_size: int | None = None, *, root: str | Path | None = None, download: bool | str = True, sampler=None, writer=None, transform: Transform | None = None, num_procs: int = 0, num_slices: int | None = None, slice_len: int | None = None, strict_len: bool = True, replacement: bool = True, mp_start_method: str = 'fork', **kwargs)[原始碼]¶
Atari DQN 經驗回放類。
Atari DQN 資料集(https://offline-rl.github.io/)包含了 DQN 在 2600 個 Atari 遊戲上進行的 5 次訓練迭代,總計 2 億幀。子取樣率(幀跳過)為 4,意味著每個遊戲資料集總共有 5000 萬步。
資料格式遵循 TED 約定。由於資料集較大,資料格式化是在取樣時線上進行的。
為了使訓練更加模組化,我們將每個 Atari 遊戲的資料集分成不同的訓練輪次。因此,每個資料集被呈現為一個包含 50x10^6 個元素的 Storage。在底層,這個資料集被分成 50 個長度為 100 萬的記憶體對映 tensordicts。
- 引數:
dataset_id (str) – 要下載的資料集。必須是
AtariDQNExperienceReplay.available_datasets的一部分。batch_size (int) – 抽樣期間使用的批大小。如有必要,可以透過 data.sample(batch_size) 覆蓋。
- 關鍵字引數:
root (Path 或 str, optional) – AtariDQN 資料集根目錄。實際的資料集記憶體對映檔案將儲存在 <root>/<dataset_id> 下。如果未提供,則預設為 ~/.cache/torchrl/atari。
num_procs (int, optional) – 用於預處理的程序數量。在資料已下載時無效。預設為 0(不使用多程序)。
download (bool 或 str, optional) – 如果找不到資料集,是否應下載。預設為
True。下載也可以傳遞為"force",在這種情況下,下載的資料將被覆蓋。sampler (Sampler, optional) – 要使用的取樣器。如果未提供,將使用預設的 RandomSampler()。
writer (Writer, optional) – 要使用的寫入器。如果未提供,將使用預設的
ImmutableDatasetWriter。collate_fn (callable, 可選) – 將樣本列表合併以形成 Tensor(s)/輸出的 mini-batch。在從 map 風格的資料集進行批處理載入時使用。
pin_memory (bool) – 是否應對 rb 樣本呼叫 pin_memory()。
prefetch (int, 可選) – 使用多執行緒預取的下一個批次數。
transform (Transform, optional) – 呼叫 sample() 時要執行的轉換。要連結轉換,請使用
Compose類。num_slices (int, optional) – 要取樣的切片數量。batch_size 必須大於等於
num_slices引數。與slice_len互斥。預設為None(不進行切片取樣)。sampler引數將覆蓋此值。slice_len (int, optional) – 要取樣的切片長度。batch_size 必須大於等於
slice_len引數並且可被其整除。與num_slices互斥。預設為None(不進行切片取樣)。sampler引數將覆蓋此值。strict_length (bool, optional) – 如果為
False,則允許批次中出現長度小於 slice_len(或 batch_size // num_slices)的軌跡。請注意,這可能導致實際的 batch_size 短於要求的!軌跡可以使用torchrl.collectors.split_trajectories()進行分割。預設為True。sampler引數將覆蓋此值。replacement (bool, optional) – 如果為
False,則進行無放回取樣。sampler引數將覆蓋此值。mp_start_method (str, optional) – 多程序下載的啟動方法。預設為
"fork"。
- 變數:
available_datasets – 可用資料集列表,格式為 <game_name>/<run>。例如:“Pong/5”,“Krull/2”,…。
dataset_id (str) – 資料集的名稱。
episodes (torch.Tensor) – 一個一維張量,指示 100 萬幀中的每一幀屬於哪個執行。用於
SliceSampler以經濟高效地取樣片段。
示例
>>> from torchrl.data.datasets import AtariDQNExperienceReplay >>> dataset = AtariDQNExperienceReplay("Pong/5", batch_size=128) >>> for data in dataset: ... print(data) ... break TensorDict( fields={ action: Tensor(shape=torch.Size([128]), device=cpu, dtype=torch.int32, is_shared=False), done: Tensor(shape=torch.Size([128]), device=cpu, dtype=torch.uint8, is_shared=False), index: Tensor(shape=torch.Size([128]), device=cpu, dtype=torch.int64, is_shared=False), metadata: NonTensorData( data={'invalid_range': MemoryMappedTensor([999998, 999999, 0, 1, 2]), 'add_count': MemoryMappedTensor(999999), 'dataset_id': 'Pong/5'}}, batch_size=torch.Size([128]), device=None, is_shared=False), next: TensorDict( fields={ done: Tensor(shape=torch.Size([128]), device=cpu, dtype=torch.uint8, is_shared=False), observation: Tensor(shape=torch.Size([128, 84, 84]), device=cpu, dtype=torch.uint8, is_shared=False), reward: Tensor(shape=torch.Size([128]), device=cpu, dtype=torch.float32, is_shared=False), terminated: Tensor(shape=torch.Size([128]), device=cpu, dtype=torch.uint8, is_shared=False), truncated: Tensor(shape=torch.Size([128]), device=cpu, dtype=torch.uint8, is_shared=False)}, batch_size=torch.Size([128]), device=None, is_shared=False), observation: Tensor(shape=torch.Size([128, 84, 84]), device=cpu, dtype=torch.uint8, is_shared=False), terminated: Tensor(shape=torch.Size([128]), device=cpu, dtype=torch.uint8, is_shared=False), truncated: Tensor(shape=torch.Size([128]), device=cpu, dtype=torch.uint8, is_shared=False)}, batch_size=torch.Size([128]), device=None, is_shared=False)
警告
Atari-DQN 不提供終止訊號之後的下一觀察。換句話說,當
("next", "done")為True時,無法獲得("next", "observation")狀態。此值填充為 0,但實際上不應使用。如果使用 TorchRL 的值估計器(ValueEstimator),則不會有問題。注意
由於用於片段取樣的取樣器構造略顯複雜,我們使使用者能夠將
SliceSampler的引數直接傳遞給AtariDQNExperienceReplay資料集:任何num_slices或slice_len引數都將使取樣器成為SliceSampler的例項。也可以傳遞strict_length引數。>>> from torchrl.data.datasets import AtariDQNExperienceReplay >>> from torchrl.data.replay_buffers import SliceSampler >>> dataset = AtariDQNExperienceReplay("Pong/5", batch_size=128, slice_len=64) >>> for data in dataset: ... print(data) ... print(data.get("index")) # indices are in 4 groups of consecutive values ... break TensorDict( fields={ action: Tensor(shape=torch.Size([128]), device=cpu, dtype=torch.int32, is_shared=False), done: Tensor(shape=torch.Size([128]), device=cpu, dtype=torch.uint8, is_shared=False), index: Tensor(shape=torch.Size([128]), device=cpu, dtype=torch.int64, is_shared=False), metadata: NonTensorData( data={'invalid_range': MemoryMappedTensor([999998, 999999, 0, 1, 2]), 'add_count': MemoryMappedTensor(999999), 'dataset_id': 'Pong/5'}}, batch_size=torch.Size([128]), device=None, is_shared=False), next: TensorDict( fields={ done: Tensor(shape=torch.Size([128, 1]), device=cpu, dtype=torch.bool, is_shared=False), observation: Tensor(shape=torch.Size([128, 84, 84]), device=cpu, dtype=torch.uint8, is_shared=False), reward: Tensor(shape=torch.Size([128]), device=cpu, dtype=torch.float32, is_shared=False), terminated: Tensor(shape=torch.Size([128, 1]), device=cpu, dtype=torch.bool, is_shared=False), truncated: Tensor(shape=torch.Size([128, 1]), device=cpu, dtype=torch.bool, is_shared=False)}, batch_size=torch.Size([128]), device=None, is_shared=False), observation: Tensor(shape=torch.Size([128, 84, 84]), device=cpu, dtype=torch.uint8, is_shared=False), terminated: Tensor(shape=torch.Size([128]), device=cpu, dtype=torch.uint8, is_shared=False), truncated: Tensor(shape=torch.Size([128]), device=cpu, dtype=torch.uint8, is_shared=False)}, batch_size=torch.Size([128]), device=None, is_shared=False) tensor([2657628, 2657629, 2657630, 2657631, 2657632, 2657633, 2657634, 2657635, 2657636, 2657637, 2657638, 2657639, 2657640, 2657641, 2657642, 2657643, 2657644, 2657645, 2657646, 2657647, 2657648, 2657649, 2657650, 2657651, 2657652, 2657653, 2657654, 2657655, 2657656, 2657657, 2657658, 2657659, 2657660, 2657661, 2657662, 2657663, 2657664, 2657665, 2657666, 2657667, 2657668, 2657669, 2657670, 2657671, 2657672, 2657673, 2657674, 2657675, 2657676, 2657677, 2657678, 2657679, 2657680, 2657681, 2657682, 2657683, 2657684, 2657685, 2657686, 2657687, 2657688, 2657689, 2657690, 2657691, 1995687, 1995688, 1995689, 1995690, 1995691, 1995692, 1995693, 1995694, 1995695, 1995696, 1995697, 1995698, 1995699, 1995700, 1995701, 1995702, 1995703, 1995704, 1995705, 1995706, 1995707, 1995708, 1995709, 1995710, 1995711, 1995712, 1995713, 1995714, 1995715, 1995716, 1995717, 1995718, 1995719, 1995720, 1995721, 1995722, 1995723, 1995724, 1995725, 1995726, 1995727, 1995728, 1995729, 1995730, 1995731, 1995732, 1995733, 1995734, 1995735, 1995736, 1995737, 1995738, 1995739, 1995740, 1995741, 1995742, 1995743, 1995744, 1995745, 1995746, 1995747, 1995748, 1995749, 1995750])
注意
一如既往,資料集應使用
ReplayBufferEnsemble進行組合。>>> from torchrl.data.datasets import AtariDQNExperienceReplay >>> from torchrl.data.replay_buffers import ReplayBufferEnsemble >>> # we change this parameter for quick experimentation, in practice it should be left untouched >>> AtariDQNExperienceReplay._max_runs = 2 >>> dataset_asterix = AtariDQNExperienceReplay("Asterix/5", batch_size=128, slice_len=64, num_procs=4) >>> dataset_pong = AtariDQNExperienceReplay("Pong/5", batch_size=128, slice_len=64, num_procs=4) >>> dataset = ReplayBufferEnsemble(dataset_pong, dataset_asterix, batch_size=128, sample_from_all=True) >>> sample = dataset.sample() >>> print("first sample, Asterix", sample[0]) first sample, Asterix TensorDict( fields={ action: Tensor(shape=torch.Size([64]), device=cpu, dtype=torch.int32, is_shared=False), done: Tensor(shape=torch.Size([64]), device=cpu, dtype=torch.uint8, is_shared=False), index: TensorDict( fields={ buffer_ids: Tensor(shape=torch.Size([64]), device=cpu, dtype=torch.int64, is_shared=False), index: Tensor(shape=torch.Size([64]), device=cpu, dtype=torch.int64, is_shared=False)}, batch_size=torch.Size([64]), device=None, is_shared=False), metadata: NonTensorData( data={'invalid_range': MemoryMappedTensor([999998, 999999, 0, 1, 2]), 'add_count': MemoryMappedTensor(999999), 'dataset_id': 'Pong/5'}, batch_size=torch.Size([64]), device=None, is_shared=False), next: TensorDict( fields={ done: Tensor(shape=torch.Size([64, 1]), device=cpu, dtype=torch.bool, is_shared=False), observation: Tensor(shape=torch.Size([64, 84, 84]), device=cpu, dtype=torch.uint8, is_shared=False), reward: Tensor(shape=torch.Size([64]), device=cpu, dtype=torch.float32, is_shared=False), terminated: Tensor(shape=torch.Size([64, 1]), device=cpu, dtype=torch.bool, is_shared=False), truncated: Tensor(shape=torch.Size([64, 1]), device=cpu, dtype=torch.bool, is_shared=False)}, batch_size=torch.Size([64]), device=None, is_shared=False), observation: Tensor(shape=torch.Size([64, 84, 84]), device=cpu, dtype=torch.uint8, is_shared=False), terminated: Tensor(shape=torch.Size([64]), device=cpu, dtype=torch.uint8, is_shared=False), truncated: Tensor(shape=torch.Size([64]), device=cpu, dtype=torch.uint8, is_shared=False)}, batch_size=torch.Size([64]), device=None, is_shared=False) >>> print("second sample, Pong", sample[1]) second sample, Pong TensorDict( fields={ action: Tensor(shape=torch.Size([64]), device=cpu, dtype=torch.int32, is_shared=False), done: Tensor(shape=torch.Size([64]), device=cpu, dtype=torch.uint8, is_shared=False), index: TensorDict( fields={ buffer_ids: Tensor(shape=torch.Size([64]), device=cpu, dtype=torch.int64, is_shared=False), index: Tensor(shape=torch.Size([64]), device=cpu, dtype=torch.int64, is_shared=False)}, batch_size=torch.Size([64]), device=None, is_shared=False), metadata: NonTensorData( data={'invalid_range': MemoryMappedTensor([999998, 999999, 0, 1, 2]), 'add_count': MemoryMappedTensor(999999), 'dataset_id': 'Asterix/5'}, batch_size=torch.Size([64]), device=None, is_shared=False), next: TensorDict( fields={ done: Tensor(shape=torch.Size([64, 1]), device=cpu, dtype=torch.bool, is_shared=False), observation: Tensor(shape=torch.Size([64, 84, 84]), device=cpu, dtype=torch.uint8, is_shared=False), reward: Tensor(shape=torch.Size([64]), device=cpu, dtype=torch.float32, is_shared=False), terminated: Tensor(shape=torch.Size([64, 1]), device=cpu, dtype=torch.bool, is_shared=False), truncated: Tensor(shape=torch.Size([64, 1]), device=cpu, dtype=torch.bool, is_shared=False)}, batch_size=torch.Size([64]), device=None, is_shared=False), observation: Tensor(shape=torch.Size([64, 84, 84]), device=cpu, dtype=torch.uint8, is_shared=False), terminated: Tensor(shape=torch.Size([64]), device=cpu, dtype=torch.uint8, is_shared=False), truncated: Tensor(shape=torch.Size([64]), device=cpu, dtype=torch.uint8, is_shared=False)}, batch_size=torch.Size([64]), device=None, is_shared=False) >>> print("Aggregate (metadata hidden)", sample) Aggregate (metadata hidden) LazyStackedTensorDict( fields={ action: Tensor(shape=torch.Size([2, 64]), device=cpu, dtype=torch.int32, is_shared=False), done: Tensor(shape=torch.Size([2, 64]), device=cpu, dtype=torch.uint8, is_shared=False), index: LazyStackedTensorDict( fields={ buffer_ids: Tensor(shape=torch.Size([2, 64]), device=cpu, dtype=torch.int64, is_shared=False), index: Tensor(shape=torch.Size([2, 64]), device=cpu, dtype=torch.int64, is_shared=False)}, exclusive_fields={ }, batch_size=torch.Size([2, 64]), device=None, is_shared=False, stack_dim=0), metadata: LazyStackedTensorDict( fields={ }, exclusive_fields={ }, batch_size=torch.Size([2, 64]), device=None, is_shared=False, stack_dim=0), next: LazyStackedTensorDict( fields={ done: Tensor(shape=torch.Size([2, 64, 1]), device=cpu, dtype=torch.bool, is_shared=False), observation: Tensor(shape=torch.Size([2, 64, 84, 84]), device=cpu, dtype=torch.uint8, is_shared=False), reward: Tensor(shape=torch.Size([2, 64]), device=cpu, dtype=torch.float32, is_shared=False), terminated: Tensor(shape=torch.Size([2, 64, 1]), device=cpu, dtype=torch.bool, is_shared=False), truncated: Tensor(shape=torch.Size([2, 64, 1]), device=cpu, dtype=torch.bool, is_shared=False)}, exclusive_fields={ }, batch_size=torch.Size([2, 64]), device=None, is_shared=False, stack_dim=0), observation: Tensor(shape=torch.Size([2, 64, 84, 84]), device=cpu, dtype=torch.uint8, is_shared=False), terminated: Tensor(shape=torch.Size([2, 64]), device=cpu, dtype=torch.uint8, is_shared=False), truncated: Tensor(shape=torch.Size([2, 64]), device=cpu, dtype=torch.uint8, is_shared=False)}, exclusive_fields={ }, batch_size=torch.Size([2, 64]), device=None, is_shared=False, stack_dim=0)
- add(data: TensorDictBase) int¶
將單個元素新增到重放緩衝區。
- 引數:
data (Any) – 要新增到重放緩衝區的資料
- 返回:
資料在重放緩衝區中的索引。
- append_transform(transform: Transform, *, invert: bool = False) ReplayBuffer¶
將變換附加到末尾。
呼叫 sample 時按順序應用變換。
- 引數:
transform (Transform) – 要附加的變換
- 關鍵字引數:
invert (bool, optional) – 如果為
True,則轉換將被反轉(寫入時呼叫正向呼叫,讀取時呼叫反向呼叫)。預設為False。
示例
>>> rb = ReplayBuffer(storage=LazyMemmapStorage(10), batch_size=4) >>> data = TensorDict({"a": torch.zeros(10)}, [10]) >>> def t(data): ... data += 1 ... return data >>> rb.append_transform(t, invert=True) >>> rb.extend(data) >>> assert (data == 1).all()
- classmethod as_remote(remote_config=None)¶
建立一個遠端 ray 類的例項。
- 引數:
cls (Python Class) – 要遠端例項化的類。
remote_config (dict) – 為該類保留的 CPU 核心數量。預設為 torchrl.collectors.distributed.ray.DEFAULT_REMOTE_CLASS_CONFIG。
- 返回:
一個建立 ray 遠端類例項的函式。
- property batch_size¶
重放緩衝區的批次大小。
可以透過在
sample()方法中設定 batch_size 引數來覆蓋批次大小。它定義了
sample()返回的樣本數量以及ReplayBuffer迭代器生成的樣本數量。
- abstract property data_path: Path¶
資料集路徑,包括分割。
- abstract property data_path_root: Path¶
資料集根目錄路徑。
- delete()¶
從磁碟刪除資料集儲存。
- dumps(path)¶
將重放緩衝區儲存到指定路徑的磁碟上。
- 引數:
path (Path 或 str) – 儲存重放緩衝區的路徑。
示例
>>> import tempfile >>> import tqdm >>> from torchrl.data import LazyMemmapStorage, TensorDictReplayBuffer >>> from torchrl.data.replay_buffers.samplers import PrioritizedSampler, RandomSampler >>> import torch >>> from tensordict import TensorDict >>> # Build and populate the replay buffer >>> S = 1_000_000 >>> sampler = PrioritizedSampler(S, 1.1, 1.0) >>> # sampler = RandomSampler() >>> storage = LazyMemmapStorage(S) >>> rb = TensorDictReplayBuffer(storage=storage, sampler=sampler) >>> >>> for _ in tqdm.tqdm(range(100)): ... td = TensorDict({"obs": torch.randn(100, 3, 4), "next": {"obs": torch.randn(100, 3, 4)}, "td_error": torch.rand(100)}, [100]) ... rb.extend(td) ... sample = rb.sample(32) ... rb.update_tensordict_priority(sample) >>> # save and load the buffer >>> with tempfile.TemporaryDirectory() as tmpdir: ... rb.dumps(tmpdir) ... ... sampler = PrioritizedSampler(S, 1.1, 1.0) ... # sampler = RandomSampler() ... storage = LazyMemmapStorage(S) ... rb_load = TensorDictReplayBuffer(storage=storage, sampler=sampler) ... rb_load.loads(tmpdir) ... assert len(rb) == len(rb_load)
- empty(empty_write_count: bool = True)¶
清空重放緩衝區並將遊標重置為 0。
- 引數:
empty_write_count (bool, optional) – 是否清空 write_count 屬性。預設為 True。
- extend(tensordicts: TensorDictBase, *, update_priority: bool | None = None) torch.Tensor¶
使用資料批次擴充套件重放緩衝區。
- 引數:
tensordicts (TensorDictBase) – 用於擴充套件重放緩衝區的資料。
- 關鍵字引數:
update_priority (bool, optional) – 是否更新資料的優先順序。預設為 True。
- 返回:
已新增到重放緩衝區的資料的索引。
- insert_transform(index: int, transform: Transform, *, invert: bool = False) ReplayBuffer¶
插入變換。
呼叫 sample 時按順序執行變換。
- 引數:
index (int) – 插入變換的位置。
transform (Transform) – 要附加的變換
- 關鍵字引數:
invert (bool, optional) – 如果為
True,則轉換將被反轉(寫入時呼叫正向呼叫,讀取時呼叫反向呼叫)。預設為False。
- loads(path)¶
在給定路徑載入重放緩衝區狀態。
緩衝區應具有匹配的元件,並使用
dumps()儲存。- 引數:
path (Path 或 str) – 重放緩衝區儲存的路徑。
有關更多資訊,請參閱
dumps()。
- next()¶
返回重放緩衝區的下一個項。
此方法用於在 __iter__ 不可用的情況下迭代重放緩衝區,例如
RayReplayBuffer。
- preprocess(fn: Callable[[TensorDictBase], TensorDictBase], dim: int = 0, num_workers: int | None = None, *, chunksize: int | None = None, num_chunks: int | None = None, pool: mp.Pool | None = None, generator: torch.Generator | None = None, max_tasks_per_child: int | None = None, worker_threads: int = 1, index_with_generator: bool = False, pbar: bool = False, mp_start_method: str | None = None, dest: str | Path, num_frames: int | None = None)[原始碼]¶
預處理資料集並返回一個包含格式化資料的新儲存。
資料轉換必須是單位化的(作用於資料集的單個樣本)。
Args 和 Keyword Args 會轉發給
map()。資料集隨後可以使用
delete()進行刪除。- 關鍵字引數:
dest (path 或 等價物) – 新資料集位置的路徑。
num_frames (int, 可選) – 如果提供,則僅轉換前 num_frames 幀。這對於除錯轉換很有用。
返回:將在
ReplayBuffer例項中使用的新的儲存。示例
>>> from torchrl.data.datasets import MinariExperienceReplay >>> >>> data = MinariExperienceReplay( ... list(MinariExperienceReplay.available_datasets)[0], ... batch_size=32 ... ) >>> print(data) MinariExperienceReplay( storages=TensorStorage(TensorDict( fields={ action: MemoryMappedTensor(shape=torch.Size([1000000, 8]), device=cpu, dtype=torch.float32, is_shared=True), episode: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.int64, is_shared=True), info: TensorDict( fields={ distance_from_origin: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True), forward_reward: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True), goal: MemoryMappedTensor(shape=torch.Size([1000000, 2]), device=cpu, dtype=torch.float64, is_shared=True), qpos: MemoryMappedTensor(shape=torch.Size([1000000, 15]), device=cpu, dtype=torch.float64, is_shared=True), qvel: MemoryMappedTensor(shape=torch.Size([1000000, 14]), device=cpu, dtype=torch.float64, is_shared=True), reward_ctrl: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True), reward_forward: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True), reward_survive: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True), success: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.bool, is_shared=True), x_position: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True), x_velocity: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True), y_position: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True), y_velocity: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True)}, batch_size=torch.Size([1000000]), device=cpu, is_shared=False), next: TensorDict( fields={ done: MemoryMappedTensor(shape=torch.Size([1000000, 1]), device=cpu, dtype=torch.bool, is_shared=True), info: TensorDict( fields={ distance_from_origin: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True), forward_reward: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True), goal: MemoryMappedTensor(shape=torch.Size([1000000, 2]), device=cpu, dtype=torch.float64, is_shared=True), qpos: MemoryMappedTensor(shape=torch.Size([1000000, 15]), device=cpu, dtype=torch.float64, is_shared=True), qvel: MemoryMappedTensor(shape=torch.Size([1000000, 14]), device=cpu, dtype=torch.float64, is_shared=True), reward_ctrl: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True), reward_forward: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True), reward_survive: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True), success: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.bool, is_shared=True), x_position: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True), x_velocity: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True), y_position: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True), y_velocity: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True)}, batch_size=torch.Size([1000000]), device=cpu, is_shared=False), observation: TensorDict( fields={ achieved_goal: MemoryMappedTensor(shape=torch.Size([1000000, 2]), device=cpu, dtype=torch.float64, is_shared=True), desired_goal: MemoryMappedTensor(shape=torch.Size([1000000, 2]), device=cpu, dtype=torch.float64, is_shared=True), observation: MemoryMappedTensor(shape=torch.Size([1000000, 27]), device=cpu, dtype=torch.float64, is_shared=True)}, batch_size=torch.Size([1000000]), device=cpu, is_shared=False), reward: MemoryMappedTensor(shape=torch.Size([1000000, 1]), device=cpu, dtype=torch.float64, is_shared=True), terminated: MemoryMappedTensor(shape=torch.Size([1000000, 1]), device=cpu, dtype=torch.bool, is_shared=True), truncated: MemoryMappedTensor(shape=torch.Size([1000000, 1]), device=cpu, dtype=torch.bool, is_shared=True)}, batch_size=torch.Size([1000000]), device=cpu, is_shared=False), observation: TensorDict( fields={ achieved_goal: MemoryMappedTensor(shape=torch.Size([1000000, 2]), device=cpu, dtype=torch.float64, is_shared=True), desired_goal: MemoryMappedTensor(shape=torch.Size([1000000, 2]), device=cpu, dtype=torch.float64, is_shared=True), observation: MemoryMappedTensor(shape=torch.Size([1000000, 27]), device=cpu, dtype=torch.float64, is_shared=True)}, batch_size=torch.Size([1000000]), device=cpu, is_shared=False)}, batch_size=torch.Size([1000000]), device=cpu, is_shared=False)), samplers=RandomSampler, writers=ImmutableDatasetWriter(), batch_size=32, transform=Compose( ), collate_fn=<function _collate_id at 0x120e21dc0>) >>> from torchrl.envs import CatTensors, Compose >>> from tempfile import TemporaryDirectory >>> >>> cat_tensors = CatTensors( ... in_keys=[("observation", "observation"), ("observation", "achieved_goal"), ... ("observation", "desired_goal")], ... out_key="obs" ... ) >>> cat_next_tensors = CatTensors( ... in_keys=[("next", "observation", "observation"), ... ("next", "observation", "achieved_goal"), ... ("next", "observation", "desired_goal")], ... out_key=("next", "obs") ... ) >>> t = Compose(cat_tensors, cat_next_tensors) >>> >>> def func(td): ... td = td.select( ... "action", ... "episode", ... ("next", "done"), ... ("next", "observation"), ... ("next", "reward"), ... ("next", "terminated"), ... ("next", "truncated"), ... "observation" ... ) ... td = t(td) ... return td >>> with TemporaryDirectory() as tmpdir: ... new_storage = data.preprocess(func, num_workers=4, pbar=True, mp_start_method="fork", dest=tmpdir) ... rb = ReplayBuffer(storage=new_storage) ... print(rb) ReplayBuffer( storage=TensorStorage( data=TensorDict( fields={ action: MemoryMappedTensor(shape=torch.Size([1000000, 8]), device=cpu, dtype=torch.float32, is_shared=True), episode: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.int64, is_shared=True), next: TensorDict( fields={ done: MemoryMappedTensor(shape=torch.Size([1000000, 1]), device=cpu, dtype=torch.bool, is_shared=True), obs: MemoryMappedTensor(shape=torch.Size([1000000, 31]), device=cpu, dtype=torch.float64, is_shared=True), observation: TensorDict( fields={ }, batch_size=torch.Size([1000000]), device=cpu, is_shared=False), reward: MemoryMappedTensor(shape=torch.Size([1000000, 1]), device=cpu, dtype=torch.float64, is_shared=True), terminated: MemoryMappedTensor(shape=torch.Size([1000000, 1]), device=cpu, dtype=torch.bool, is_shared=True), truncated: MemoryMappedTensor(shape=torch.Size([1000000, 1]), device=cpu, dtype=torch.bool, is_shared=True)}, batch_size=torch.Size([1000000]), device=cpu, is_shared=False), obs: MemoryMappedTensor(shape=torch.Size([1000000, 31]), device=cpu, dtype=torch.float64, is_shared=True), observation: TensorDict( fields={ }, batch_size=torch.Size([1000000]), device=cpu, is_shared=False)}, batch_size=torch.Size([1000000]), device=cpu, is_shared=False), shape=torch.Size([1000000]), len=1000000, max_size=1000000), sampler=RandomSampler(), writer=RoundRobinWriter(cursor=0, full_storage=True), batch_size=None, collate_fn=<function _collate_id at 0x168406fc0>)
- register_load_hook(hook: Callable[[Any], Any])¶
為儲存註冊載入鉤子。
注意
鉤子目前不會在儲存重放緩衝區時序列化:每次建立緩衝區時都必須手動重新初始化它們。
- register_save_hook(hook: Callable[[Any], Any])¶
為儲存註冊儲存鉤子。
注意
鉤子目前不會在儲存重放緩衝區時序列化:每次建立緩衝區時都必須手動重新初始化它們。
- sample(batch_size: int | None = None, return_info: bool = False, include_info: bool | None = None) TensorDictBase¶
從重放緩衝區中取樣資料批次。
使用 Sampler 取樣索引,並從 Storage 中檢索它們。
- 引數:
batch_size (int, optional) – 要收集的資料的大小。如果未提供,此方法將取樣由取樣器指示的批次大小。
return_info (bool) – 是否返回資訊。如果為 True,則結果為元組 (data, info)。如果為 False,則結果為資料。
- 返回:
一個包含在重放緩衝區中選擇的資料批次的 tensordict。如果 return_info 標誌設定為 True,則包含此 tensordict 和資訊的元組。
- set_storage(storage: Storage, collate_fn: Callable | None = None)¶
在重放緩衝區中設定新的儲存並返回之前的儲存。
- 引數:
storage (Storage) – 緩衝區的新的儲存。
collate_fn (callable, optional) – 如果提供,collate_fn 將設定為此值。否則,它將被重置為預設值。
- property write_count: int¶
透過 add 和 extend 寫入緩衝區的總項數。