tensordict.nn.distributions.AddStateIndependentNormalScale¶
- class tensordict.nn.distributions.AddStateIndependentNormalScale(scale_shape: Optional[Union[Size, int, tuple]] = None, *, scale_mapping: str = 'exp', scale_lb: Number = 0.0001, device: Optional[device] = None, make_param: bool = True, init_value: float = 0.0)¶
一個 nn.Module,用於新增可訓練的、與狀態無關的尺度引數。
尺度引數使用指定的
scale_mapping對映為正值。- 引數:
scale_shape (torch.Size 或 等價物, 可選) – 尺度引數的形狀。預設為
torch.Size(())。- 關鍵字引數:
scale_mapping (str, 可選) – 用於標準差的正向對映函式。預設為
"exp",可選值:"softplus"、"exp"、"relu"、"biased_softplus_1"。scale_lb (Number, 可選) – 方差可以取的最小值。預設為
1e-4。device (torch.device, 可選) – 模組的裝置。
make_param (bool, 可選) – 尺度是引數(
True)還是緩衝區(False)。預設為True。init_value (float, 可選) – 狀態無關尺度的初始值。預設為 0.0。
示例
>>> from torch import nn >>> import torch >>> num_outputs = 4 >>> module = nn.Linear(3, num_outputs) >>> module_normal = AddStateIndependentNormalScale(num_outputs) >>> tensor = torch.randn(3) >>> loc, scale = module_normal(module(tensor)) >>> print(loc.shape, scale.shape) torch.Size([4]) torch.Size([4]) >>> assert (scale > 0).all() >>> # with modules that return more than one tensor >>> module = nn.LSTM(3, num_outputs) >>> module_normal = AddStateIndependentNormalScale(num_outputs) >>> tensor = torch.randn(4, 2, 3) >>> loc, scale, others = module_normal(*module(tensor)) >>> print(loc.shape, scale.shape) torch.Size([4, 2, 4]) torch.Size([4, 2, 4]) >>> assert (scale > 0).all()