快捷方式

torchrl.trainers.algorithms.configs.modules.ConvNetConfig

class torchrl.trainers.algorithms.configs.modules.ConvNetConfig(_partial_: bool = False, in_features: int | None = None, depth: int | None = None, num_cells: Any = None, kernel_sizes: Any = 3, strides: Any = 1, paddings: Any = 0, activation_class: ActivationConfig = <factory>, activation_kwargs: Any = None, norm_class: NormConfig | None = None, norm_kwargs: Any = None, bias_last_layer: bool = True, aggregator_class: AggregatorConfig = <factory>, aggregator_kwargs: dict | None = None, squeeze_output: bool = False, device: Any = None, _target_: str = 'torchrl.modules.ConvNet')[原始碼]

用於配置卷積網路的類。

預設為 torchrl.modules.ConvNet

示例

>>> cfg = ConvNetConfig(in_features=3, depth=2, num_cells=[32, 64], kernel_sizes=[3, 5], strides=[1, 2], paddings=[1, 2])
>>> net = instantiate(cfg)
>>> y = net(torch.randn(1, 3, 32, 32))
>>> assert y.shape == (1, 64)

文件

訪問全面的 PyTorch 開發者文件

檢視文件

教程

為初學者和高階開發者提供深入的教程

檢視教程

資源

查詢開發資源並讓您的問題得到解答

檢視資源