generalized_advantage_estimate¶
- class torchrl.objectives.value.functional.generalized_advantage_estimate(gamma: float, lmbda: float, state_value: torch.Tensor, next_state_value: torch.Tensor, reward: torch.Tensor, done: torch.Tensor, terminated: torch.Tensor | None = None, *, time_dim: int = - 2)[原始碼]¶
軌跡的廣義優勢估計。
Refer to “HIGH-DIMENSIONAL CONTINUOUS CONTROL USING GENERALIZED ADVANTAGE ESTIMATION” https://arxiv.org/pdf/1506.02438.pdf for more context.
- 引數:
gamma (scalar) – exponential mean discount.
lmbda (scalar) – trajectory discount.
state_value (Tensor) – 使用 old_state 輸入的值函式結果。
next_state_value (Tensor) – 使用 new_state 輸入的值函式結果。
reward (Tensor) – 在環境中採取動作的獎勵。
done (Tensor) – 軌跡結束的布林標誌。
terminated (Tensor) – 劇集結束的布林標誌。如果未提供,則預設為
done。time_dim (int) – 時間展開的維度。預設為 -2。
所有張量(值、獎勵和完成)都必須具有形狀
[*Batch x TimeSteps x *F],其中*F是特徵維度。