REDQLoss¶
- class torchrl.objectives.REDQLoss(*args, **kwargs)[原始碼]¶
REDQ 損失模組。
REDQ (RANDOMIZED ENSEMBLED DOUBLE Q-LEARNING: LEARNING FAST WITHOUT A MODEL https://openreview.net/pdf?id=AY8zfZm0tDd) 泛化了使用 Q 值函式集合來訓練類 SAC 演算法的思想。
- 引數:
actor_network (TensorDictModule) – 要訓練的 actor
qvalue_network (TensorDictModule) –
單個 Q 值網路或 Q 值網路列表。如果提供了 qvalue_network 的單個例項,它將被複制
num_qvalue_nets次。如果傳遞了模組列表,它們的引數將被堆疊,除非它們具有相同的身份(在這種情況下,原始引數將被擴充套件)。警告
當傳入引數列表時,它 __不會__ 與策略引數進行比較,所有引數都將被視為獨立的。
- 關鍵字引數:
num_qvalue_nets (int, optional) – 要訓練的 Q 值網路的數量。預設為
10。sub_sample_len (int, optional) – 用於評估下一個狀態值的 Q 值網路的子取樣數量。預設為
2。loss_function (str, optional) – 用於 Q 值的損失函式。可以是
"smooth_l1"、"l2"、"l1"中的一個,預設為"smooth_l1"。alpha_init (
float, optional) – 初始熵乘數。預設為1.0。min_alpha (
float, optional) – alpha 的最小值。預設為0.1。max_alpha (
float, optional) – alpha 的最大值。預設為10.0。action_spec (TensorSpec, 可選) – 動作張量規範。如果未提供且目標熵為
"auto",則將從策略中檢索。fixed_alpha (bool, optional) – alpha 是否應被訓練以匹配目標熵。預設為
False。target_entropy (Union[str, Number], optional) – 隨機策略的目標熵。預設為 “auto”。
delay_qvalue (bool, optional) – 目標 Q 值網路是否應與用於資料收集的 Q 值網路分開。預設為
False。gSDE (bool, optional) – 知道是否使用了 gSDE 對於建立隨機噪聲變數是必需的。預設為
False。priority_key (str, optional) – [已棄用,請改用 .set_keys()] 寫入優先順序回放緩衝區優先順序值的鍵。預設為
"td_error"。separate_losses (bool, 可選) – 如果為
True,則策略和評估器之間的共享引數將僅針對策略損失進行訓練。預設為False,即梯度將傳播到策略和評估器損失的共享引數。reduction (str, optional) – 指定應用於輸出的約簡:
"none"|"mean"|"sum"。"none":不應用約簡,"mean":輸出的總和將除以輸出中的元素數量,"sum":將對輸出進行求和。預設為"mean"。deactivate_vmap (bool, 可選) – 是否停用 vmap 呼叫並用普通 for 迴圈替換它們。預設為
False。
示例
>>> import torch >>> from torch import nn >>> from torchrl.data import Bounded >>> from torchrl.modules.distributions import NormalParamExtractor, TanhNormal >>> from torchrl.modules.tensordict_module.actors import ProbabilisticActor, ValueOperator >>> from torchrl.modules.tensordict_module.common import SafeModule >>> from torchrl.objectives.redq import REDQLoss >>> from tensordict import TensorDict >>> n_act, n_obs = 4, 3 >>> spec = Bounded(-torch.ones(n_act), torch.ones(n_act), (n_act,)) >>> net = nn.Sequential(nn.Linear(n_obs, 2 * n_act), NormalParamExtractor()) >>> module = SafeModule(net, in_keys=["observation"], out_keys=["loc", "scale"]) >>> actor = ProbabilisticActor( ... module=module, ... in_keys=["loc", "scale"], ... spec=spec, ... distribution_class=TanhNormal) >>> class ValueClass(nn.Module): ... def __init__(self): ... super().__init__() ... self.linear = nn.Linear(n_obs + n_act, 1) ... def forward(self, obs, act): ... return self.linear(torch.cat([obs, act], -1)) >>> module = ValueClass() >>> qvalue = ValueOperator( ... module=module, ... in_keys=['observation', 'action']) >>> loss = REDQLoss(actor, qvalue) >>> batch = [2, ] >>> action = spec.rand(batch) >>> data = TensorDict({ ... "observation": torch.randn(*batch, n_obs), ... "action": action, ... ("next", "done"): torch.zeros(*batch, 1, dtype=torch.bool), ... ("next", "terminated"): torch.zeros(*batch, 1, dtype=torch.bool), ... ("next", "reward"): torch.randn(*batch, 1), ... ("next", "observation"): torch.randn(*batch, n_obs), ... }, batch) >>> loss(data) TensorDict( fields={ action_log_prob_actor: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), alpha: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), entropy: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), loss_actor: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), loss_alpha: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), loss_qvalue: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), next.state_value: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), state_action_value_actor: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), target_value: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False)}, batch_size=torch.Size([]), device=None, is_shared=False)
此類與非 tensordict 的模組相容,也可以在不依賴任何 tensordict 相關原語的情況下使用。在這種情況下,預期的關鍵字引數是:
["action", "next_reward", "next_done", "next_terminated"]+ actor 和 qvalue 網路的 in_keys。返回值是一個按以下順序排列的張量元組:["loss_actor", "loss_qvalue", "loss_alpha", "alpha", "entropy", "state_action_value_actor", "action_log_prob_actor", "next.state_value", "target_value",]。示例
>>> import torch >>> from torch import nn >>> from torchrl.data import Bounded >>> from torchrl.modules.distributions import NormalParamExtractor, TanhNormal >>> from torchrl.modules.tensordict_module.actors import ProbabilisticActor, ValueOperator >>> from torchrl.modules.tensordict_module.common import SafeModule >>> from torchrl.objectives.redq import REDQLoss >>> n_act, n_obs = 4, 3 >>> spec = Bounded(-torch.ones(n_act), torch.ones(n_act), (n_act,)) >>> net = nn.Sequential(nn.Linear(n_obs, 2 * n_act), NormalParamExtractor()) >>> module = SafeModule(net, in_keys=["observation"], out_keys=["loc", "scale"]) >>> actor = ProbabilisticActor( ... module=module, ... in_keys=["loc", "scale"], ... spec=spec, ... distribution_class=TanhNormal) >>> class ValueClass(nn.Module): ... def __init__(self): ... super().__init__() ... self.linear = nn.Linear(n_obs + n_act, 1) ... def forward(self, obs, act): ... return self.linear(torch.cat([obs, act], -1)) >>> module = ValueClass() >>> qvalue = ValueOperator( ... module=module, ... in_keys=['observation', 'action']) >>> loss = REDQLoss(actor, qvalue) >>> batch = [2, ] >>> action = spec.rand(batch) >>> # filter output keys to "loss_actor", and "loss_qvalue" >>> _ = loss.select_out_keys("loss_actor", "loss_qvalue") >>> loss_actor, loss_qvalue = loss( ... observation=torch.randn(*batch, n_obs), ... action=action, ... next_done=torch.zeros(*batch, 1, dtype=torch.bool), ... next_terminated=torch.zeros(*batch, 1, dtype=torch.bool), ... next_reward=torch.randn(*batch, 1), ... next_observation=torch.randn(*batch, n_obs)) >>> loss_actor.backward()
- default_keys¶
別名:
_AcceptedKeys
- forward(tensordict: TensorDictBase = None) TensorDictBase[原始碼]¶
它旨在讀取一個輸入的 TensorDict 並返回另一個包含名為“loss*”的損失鍵的 tensordict。
將損失分解為其組成部分可以被訓練器用於在訓練過程中記錄各種損失值。輸出 tensordict 中存在的其他標量也將被記錄。
- 引數:
tensordict – 一個輸入的 tensordict,包含計算損失所需的值。
- 返回:
一個沒有批處理維度的新 tensordict,其中包含各種損失標量,這些標量將被命名為“loss*”。重要的是,損失必須以這個名稱返回,因為它們將在反向傳播之前被訓練器讀取。
- make_value_estimator(value_type: Optional[ValueEstimators] = None, **hyperparams)[原始碼]¶
值函式建構函式。
如果需要非預設值函式,必須使用此方法構建。
- 引數:
value_type (ValueEstimators) – 一個
ValueEstimators列舉型別,指示要使用的值函式。如果未提供,將使用儲存在default_value_estimator屬性中的預設值。生成的估值器類將註冊在self.value_type中,以便將來進行改進。**hyperparams – 用於值函式的超引數。如果未提供,將使用
default_value_kwargs()中指示的值。
示例
>>> from torchrl.objectives import DQNLoss >>> # initialize the DQN loss >>> actor = torch.nn.Linear(3, 4) >>> dqn_loss = DQNLoss(actor, action_space="one-hot") >>> # updating the parameters of the default value estimator >>> dqn_loss.make_value_estimator(gamma=0.9) >>> dqn_loss.make_value_estimator( ... ValueEstimators.TD1, ... gamma=0.9) >>> # if we want to change the gamma value >>> dqn_loss.make_value_estimator(dqn_loss.value_type, gamma=0.9)