快捷方式

IQLLoss

class torchrl.objectives.IQLLoss(*args, **kwargs)[原始碼]

IQL loss 的 TorchRL 實現。

在 “Offline Reinforcement Learning with Implicit Q-Learning” 中提出 https://arxiv.org/abs/2110.06169

引數:
  • actor_network (ProbabilisticActor) – 隨機策略

  • qvalue_network (TensorDictModule) –

    Q(s, a) 引數化模型 如果提供了單個 qvalue_network 例項,它將被複制 num_qvalue_nets 次。如果傳入模組列表,則它們的引數將被堆疊,除非它們共享相同的身份(在這種情況下,原始引數將被擴充套件)。

    警告

    當傳入引數列表時,它 __不會__ 與策略引數進行比較,所有引數都將被視為獨立的。

  • value_network (TensorDictModule, optional) – V(s) 引數化模型。

關鍵字引數:
  • num_qvalue_nets (integer, optional) – 使用的 Q 值網路的數量。預設為 2

  • loss_function (str, optional) – 要用於值函式損失的損失函式。預設為 “smooth_l1”

  • temperature (float, optional) – 逆溫度(beta)。超引數值越小,目標函式越接近行為克隆,值越大,則嘗試恢復 Q 函式的最大值。

  • expectile (float, optional) – expectile \(\tau\)。較大的 \(\tau\) 值對於需要動態規劃(“stichting”)的 antmaze 任務至關重要。

  • priority_key (str, optional) – [已棄用,請改用 .set_keys(priority_key=priority_key) ] 用於寫入優先順序(用於優先順序回放緩衝區)的 tensordict 鍵。預設為 “td_error”

  • separate_losses (bool, 可選) – 如果為 True,則策略和評估器之間的共享引數將僅針對策略損失進行訓練。預設為 False,即梯度將傳播到策略和評估器損失的共享引數。

  • reduction (str, optional) – 指定應用於輸出的約簡:"none" | "mean" | "sum""none":不應用約簡,"mean":輸出的總和將除以輸出中的元素數量,"sum":將對輸出進行求和。預設為 "mean"

  • deactivate_vmap (bool, 可選) – 是否停用 vmap 呼叫並用普通 for 迴圈替換它們。預設為 False

示例

>>> import torch
>>> from torch import nn
>>> from torchrl.data import Bounded
>>> from torchrl.modules.distributions import NormalParamExtractor, TanhNormal
>>> from torchrl.modules.tensordict_module.actors import ProbabilisticActor, ValueOperator
>>> from torchrl.modules.tensordict_module.common import SafeModule
>>> from torchrl.objectives.iql import IQLLoss
>>> from tensordict import TensorDict
>>> n_act, n_obs = 4, 3
>>> spec = Bounded(-torch.ones(n_act), torch.ones(n_act), (n_act,))
>>> net = nn.Sequential(nn.Linear(n_obs, 2 * n_act), NormalParamExtractor())
>>> module = SafeModule(net, in_keys=["observation"], out_keys=["loc", "scale"])
>>> actor = ProbabilisticActor(
...     module=module,
...     in_keys=["loc", "scale"],
...     spec=spec,
...     distribution_class=TanhNormal)
>>> class QValueClass(nn.Module):
...     def __init__(self):
...         super().__init__()
...         self.linear = nn.Linear(n_obs + n_act, 1)
...     def forward(self, obs, act):
...         return self.linear(torch.cat([obs, act], -1))
>>> qvalue = SafeModule(
...     QValueClass(),
...     in_keys=["observation", "action"],
...     out_keys=["state_action_value"],
... )
>>> value = SafeModule(
...     nn.Linear(n_obs, 1),
...     in_keys=["observation"],
...     out_keys=["state_value"],
... )
>>> loss = IQLLoss(actor, qvalue, value)
>>> batch = [2, ]
>>> action = spec.rand(batch)
>>> data = TensorDict({
...         "observation": torch.randn(*batch, n_obs),
...         "action": action,
...         ("next", "done"): torch.zeros(*batch, 1, dtype=torch.bool),
...         ("next", "terminated"): torch.zeros(*batch, 1, dtype=torch.bool),
...         ("next", "reward"): torch.randn(*batch, 1),
...         ("next", "observation"): torch.randn(*batch, n_obs),
...     }, batch)
>>> loss(data)
TensorDict(
    fields={
        entropy: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False),
        loss_actor: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False),
        loss_qvalue: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False),
        loss_value: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False)},
    batch_size=torch.Size([]),
    device=None,
    is_shared=False)

此類與非 tensordict 的模組相容,並且可以在不使用任何 tensordict 相關原語的情況下使用。在這種情況下,預期的關鍵字引數為: ["action", "next_reward", "next_done", "next_terminated"] + actor、value 和 qvalue 網路的 in_keys。返回值是一個按以下順序排列的張量元組: ["loss_actor", "loss_qvalue", "loss_value", "entropy"]

示例

>>> import torch
>>> from torch import nn
>>> from torchrl.data import Bounded
>>> from torchrl.modules.distributions import NormalParamExtractor, TanhNormal
>>> from torchrl.modules.tensordict_module.actors import ProbabilisticActor, ValueOperator
>>> from torchrl.modules.tensordict_module.common import SafeModule
>>> from torchrl.objectives.iql import IQLLoss
>>> _ = torch.manual_seed(42)
>>> n_act, n_obs = 4, 3
>>> spec = Bounded(-torch.ones(n_act), torch.ones(n_act), (n_act,))
>>> net = nn.Sequential(nn.Linear(n_obs, 2 * n_act), NormalParamExtractor())
>>> module = SafeModule(net, in_keys=["observation"], out_keys=["loc", "scale"])
>>> actor = ProbabilisticActor(
...     module=module,
...     in_keys=["loc", "scale"],
...     spec=spec,
...     distribution_class=TanhNormal)
>>> class QValueClass(nn.Module):
...     def __init__(self):
...         super().__init__()
...         self.linear = nn.Linear(n_obs + n_act, 1)
...     def forward(self, obs, act):
...         return self.linear(torch.cat([obs, act], -1))
>>> qvalue = SafeModule(
...     QValueClass(),
...     in_keys=["observation", "action"],
...     out_keys=["state_action_value"],
... )
>>> value = SafeModule(
...     nn.Linear(n_obs, 1),
...     in_keys=["observation"],
...     out_keys=["state_value"],
... )
>>> loss = IQLLoss(actor, qvalue, value)
>>> batch = [2, ]
>>> action = spec.rand(batch)
>>> loss_actor, loss_qvalue, loss_value, entropy = loss(
...     observation=torch.randn(*batch, n_obs),
...     action=action,
...     next_done=torch.zeros(*batch, 1, dtype=torch.bool),
...     next_terminated=torch.zeros(*batch, 1, dtype=torch.bool),
...     next_observation=torch.zeros(*batch, n_obs),
...     next_reward=torch.randn(*batch, 1))
>>> loss_actor.backward()

輸出鍵也可以使用 IQLLoss.select_out_keys() 方法進行過濾。

示例

>>> _ = loss.select_out_keys('loss_actor', 'loss_qvalue')
>>> loss_actor, loss_qvalue = loss(
...     observation=torch.randn(*batch, n_obs),
...     action=action,
...     next_done=torch.zeros(*batch, 1, dtype=torch.bool),
...     next_terminated=torch.zeros(*batch, 1, dtype=torch.bool),
...     next_observation=torch.zeros(*batch, n_obs),
...     next_reward=torch.randn(*batch, 1))
>>> loss_actor.backward()
default_keys

別名:_AcceptedKeys

forward(tensordict: TensorDictBase = None) TensorDictBase[原始碼]

它旨在讀取一個輸入的 TensorDict 並返回另一個包含名為“loss*”的損失鍵的 tensordict。

將損失分解為其組成部分可以被訓練器用於在訓練過程中記錄各種損失值。輸出 tensordict 中存在的其他標量也將被記錄。

引數:

tensordict – 一個輸入的 tensordict,包含計算損失所需的值。

返回:

一個沒有批處理維度的新 tensordict,其中包含各種損失標量,這些標量將被命名為“loss*”。重要的是,損失必須以這個名稱返回,因為它們將在反向傳播之前被訓練器讀取。

static loss_value_diff(diff, expectile=0.8)[原始碼]

iql expectile 值差的損失函式。

make_value_estimator(value_type: Optional[ValueEstimators] = None, **hyperparams)[原始碼]

值函式建構函式。

如果需要非預設值函式,必須使用此方法構建。

引數:
  • value_type (ValueEstimators) – 一個 ValueEstimators 列舉型別,指示要使用的值函式。如果未提供,將使用儲存在 default_value_estimator 屬性中的預設值。生成的估值器類將註冊在 self.value_type 中,以便將來進行改進。

  • **hyperparams – 用於值函式的超引數。如果未提供,將使用 default_value_kwargs() 中指示的值。

示例

>>> from torchrl.objectives import DQNLoss
>>> # initialize the DQN loss
>>> actor = torch.nn.Linear(3, 4)
>>> dqn_loss = DQNLoss(actor, action_space="one-hot")
>>> # updating the parameters of the default value estimator
>>> dqn_loss.make_value_estimator(gamma=0.9)
>>> dqn_loss.make_value_estimator(
...     ValueEstimators.TD1,
...     gamma=0.9)
>>> # if we want to change the gamma value
>>> dqn_loss.make_value_estimator(dqn_loss.value_type, gamma=0.9)

文件

訪問全面的 PyTorch 開發者文件

檢視文件

教程

為初學者和高階開發者提供深入的教程

檢視教程

資源

查詢開發資源並讓您的問題得到解答

檢視資源