快捷方式

CQLLoss

class torchrl.objectives.CQLLoss(*args, **kwargs)[原始碼]

連續 CQL 損失的 TorchRL 實現。

出自《Conservative Q-Learning for Offline Reinforcement Learning》https://arxiv.org/abs/2006.04779

引數:
  • actor_network (ProbabilisticActor) – 隨機策略

  • qvalue_network (TensorDictModulelist of TensorDictModule) –

    Q(s, a) 引數化模型。此模組通常輸出一個 "state_action_value" 條目。如果提供單個 qvalue_network 例項,它將被複制 N 次(此損失為 N=2)。如果傳遞模組列表,它們的引數將被堆疊,除非它們共享相同的標識(在這種情況下,原始引數將被擴充套件)。

    警告

    當傳入引數列表時,它 __不會__ 與策略引數進行比較,所有引數都將被視為獨立的。

關鍵字引數:
  • loss_function (str, optional) – 要用於值函式損失的損失函式。預設為 “smooth_l1”

  • alpha_init (float, optional) – 初始熵乘數。預設為 1.0。

  • min_alpha (float, optional) – alpha 的最小值。預設為 None(無最小值)。

  • max_alpha (float, optional) – alpha 的最大值。預設為 None(無最大值)。

  • action_spec (TensorSpec, 可選) – 動作張量規範。如果未提供且目標熵為 "auto",則將從策略中檢索。

  • fixed_alpha (bool, 可選) – 如果為 True,則 alpha 將固定為其初始值。否則,alpha 將被最佳化以匹配“target_entropy”值。預設為 False

  • target_entropy (float 或 str, 可選) – 隨機策略的目標熵。預設為“auto”,此時目標熵計算為 -prod(n_actions)

  • delay_actor (bool, optional) – 是否將目標 Actor 網路與用於資料收集的 Actor 網路分開。預設為 False

  • delay_qvalue (bool, 可選) – 是否將目標 Q 值網路與用於資料收集的 Q 值網路分開。預設為 True

  • gamma (float, optional) – 折扣因子。預設為 None

  • temperature (float, optional) – CQL 溫度。預設為 1.0。

  • min_q_weight (float, optional) – 最小 Q 權重。預設為 1.0。

  • max_q_backup (bool, optional) – 是否使用最大-最小 Q 備份。預設為 False

  • deterministic_backup (bool, optional) – 是否使用確定性。預設為 True

  • num_random (int, optional) – 為 CQL 損失取樣的隨機動作數量。預設為 10。

  • with_lagrange (bool, optional) – 是否使用拉格朗日乘數。預設為 False

  • lagrange_thresh (float, optional) – 拉格朗日閾值。預設為 0.0。

  • reduction (str, optional) – 指定應用於輸出的約簡:"none" | "mean" | "sum""none":不應用約簡,"mean":輸出的總和將除以輸出中的元素數量,"sum":將對輸出進行求和。預設為 "mean"

  • deactivate_vmap (bool, 可選) – 是否停用 vmap 呼叫並用普通 for 迴圈替換它們。預設為 False

示例

>>> import torch
>>> from torch import nn
>>> from torchrl.data import Bounded
>>> from torchrl.modules.distributions import NormalParamExtractor, TanhNormal
>>> from torchrl.modules.tensordict_module.actors import ProbabilisticActor, ValueOperator
>>> from torchrl.modules.tensordict_module.common import SafeModule
>>> from torchrl.objectives.cql import CQLLoss
>>> from tensordict import TensorDict
>>> n_act, n_obs = 4, 3
>>> spec = Bounded(-torch.ones(n_act), torch.ones(n_act), (n_act,))
>>> net = nn.Sequential(nn.Linear(n_obs, 2 * n_act), NormalParamExtractor())
>>> module = SafeModule(net, in_keys=["observation"], out_keys=["loc", "scale"])
>>> actor = ProbabilisticActor(
...     module=module,
...     in_keys=["loc", "scale"],
...     spec=spec,
...     distribution_class=TanhNormal)
>>> class ValueClass(nn.Module):
...     def __init__(self):
...         super().__init__()
...         self.linear = nn.Linear(n_obs + n_act, 1)
...     def forward(self, obs, act):
...         return self.linear(torch.cat([obs, act], -1))
>>> module = ValueClass()
>>> qvalue = ValueOperator(
...     module=module,
...     in_keys=['observation', 'action'])
>>> loss = CQLLoss(actor, qvalue)
>>> batch = [2, ]
>>> action = spec.rand(batch)
>>> data = TensorDict({
...         "observation": torch.randn(*batch, n_obs),
...         "action": action,
...         ("next", "done"): torch.zeros(*batch, 1, dtype=torch.bool),
...         ("next", "terminated"): torch.zeros(*batch, 1, dtype=torch.bool),
...         ("next", "reward"): torch.randn(*batch, 1),
...         ("next", "observation"): torch.randn(*batch, n_obs),
...     }, batch)
>>> loss(data)
TensorDict(
    fields={
        alpha: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False),
        entropy: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False),
        loss_actor: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False),
        loss_actor_bc: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False),
        loss_alpha: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False),
        loss_cql: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False),
        loss_qvalue: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False)},
    batch_size=torch.Size([]),
    device=None,
    is_shared=False)

此類與非 tensordict 的模組相容,並且可以在不使用任何與 tensordict 相關的原語的情況下使用。在這種情況下,預期的關鍵字引數是: ["action", "next_reward", "next_done", "next_terminated"] + Actor、Value 和 Qvalue 網路的 in_keys。返回值是一個按以下順序排列的張量元組: ["loss_actor", "loss_qvalue", "loss_alpha", "loss_alpha_prime", "alpha", "entropy"]

示例

>>> import torch
>>> from torch import nn
>>> from torchrl.data import Bounded
>>> from torchrl.modules.distributions import NormalParamExtractor, TanhNormal
>>> from torchrl.modules.tensordict_module.actors import ProbabilisticActor, ValueOperator
>>> from torchrl.modules.tensordict_module.common import SafeModule
>>> from torchrl.objectives.cql import CQLLoss
>>> _ = torch.manual_seed(42)
>>> n_act, n_obs = 4, 3
>>> spec = Bounded(-torch.ones(n_act), torch.ones(n_act), (n_act,))
>>> net = nn.Sequential(nn.Linear(n_obs, 2 * n_act), NormalParamExtractor())
>>> module = SafeModule(net, in_keys=["observation"], out_keys=["loc", "scale"])
>>> actor = ProbabilisticActor(
...     module=module,
...     in_keys=["loc", "scale"],
...     spec=spec,
...     distribution_class=TanhNormal)
>>> class ValueClass(nn.Module):
...     def __init__(self):
...         super().__init__()
...         self.linear = nn.Linear(n_obs + n_act, 1)
...     def forward(self, obs, act):
...         return self.linear(torch.cat([obs, act], -1))
>>> module = ValueClass()
>>> qvalue = ValueOperator(
...     module=module,
...     in_keys=['observation', 'action'])
>>> loss = CQLLoss(actor, qvalue)
>>> batch = [2, ]
>>> action = spec.rand(batch)
>>> loss_actor, loss_actor_bc, loss_qvalue, loss_cql, *_ = loss(
...     observation=torch.randn(*batch, n_obs),
...     action=action,
...     next_done=torch.zeros(*batch, 1, dtype=torch.bool),
...     next_terminated=torch.zeros(*batch, 1, dtype=torch.bool),
...     next_observation=torch.zeros(*batch, n_obs),
...     next_reward=torch.randn(*batch, 1))
>>> loss_actor.backward()

還可以使用 CQLLoss.select_out_keys() 方法過濾輸出鍵。

示例

>>> _ = loss.select_out_keys('loss_actor', 'loss_qvalue')
>>> loss_actor, loss_qvalue = loss(
...     observation=torch.randn(*batch, n_obs),
...     action=action,
...     next_done=torch.zeros(*batch, 1, dtype=torch.bool),
...     next_terminated=torch.zeros(*batch, 1, dtype=torch.bool),
...     next_observation=torch.zeros(*batch, n_obs),
...     next_reward=torch.randn(*batch, 1))
>>> loss_actor.backward()
default_keys

別名:_AcceptedKeys

forward(tensordict: TensorDictBase = None) TensorDictBase[原始碼]

它旨在讀取一個輸入的 TensorDict 並返回另一個包含名為“loss*”的損失鍵的 tensordict。

將損失分解為其組成部分可以被訓練器用於在訓練過程中記錄各種損失值。輸出 tensordict 中存在的其他標量也將被記錄。

引數:

tensordict – 一個輸入的 tensordict,包含計算損失所需的值。

返回:

一個沒有批處理維度的新 tensordict,其中包含各種損失標量,這些標量將被命名為“loss*”。重要的是,損失必須以這個名稱返回,因為它們將在反向傳播之前被訓練器讀取。

make_value_estimator(value_type: Optional[ValueEstimators] = None, **hyperparams)[原始碼]

值函式建構函式。

如果需要非預設值函式,必須使用此方法構建。

引數:
  • value_type (ValueEstimators) – 一個 ValueEstimators 列舉型別,指示要使用的值函式。如果未提供,將使用儲存在 default_value_estimator 屬性中的預設值。生成的估值器類將註冊在 self.value_type 中,以便將來進行改進。

  • **hyperparams – 用於值函式的超引數。如果未提供,將使用 default_value_kwargs() 中指示的值。

示例

>>> from torchrl.objectives import DQNLoss
>>> # initialize the DQN loss
>>> actor = torch.nn.Linear(3, 4)
>>> dqn_loss = DQNLoss(actor, action_space="one-hot")
>>> # updating the parameters of the default value estimator
>>> dqn_loss.make_value_estimator(gamma=0.9)
>>> dqn_loss.make_value_estimator(
...     ValueEstimators.TD1,
...     gamma=0.9)
>>> # if we want to change the gamma value
>>> dqn_loss.make_value_estimator(dqn_loss.value_type, gamma=0.9)

文件

訪問全面的 PyTorch 開發者文件

檢視文件

教程

為初學者和高階開發者提供深入的教程

檢視教程

資源

查詢開發資源並讓您的問題得到解答

檢視資源