SafeSequential¶
- class torchrl.modules.tensordict_module.SafeSequential(*args, **kwargs)[source]¶
一個安全的 TensorDictModule 序列。
類似於
nn.Sequence,它將一個張量透過一系列只讀取和寫入單個張量的對映,這個模組將透過查詢每個輸入模組來讀取和寫入一個 tensordict。當使用一個函式式模組呼叫TensorDictSequential例項時,預計引數列表(和緩衝區)將被連線成一個列表。- 引數:
modules (TensorDictModules 的可迭代物件) – 要按順序執行的 TensorDictModule 例項的有序序列。
partial_tolerant – 如果為
True,則輸入 tensordict 可以缺少某些輸入鍵。如果是這樣,將只執行那些給定存在鍵可以執行的模組。此外,如果輸入 tensordict 是 tensordicts 的惰性堆疊,並且 partial_tolerant 為True並且堆疊不包含所需的鍵,那麼 SafeSequential 將掃描子 tensordicts 來查詢包含所需鍵的那些,如果有的話。
TensorDictSequence 支援函式式、模組化和 vmap 編碼: .. rubric:: 示例
>>> import torch >>> from tensordict import TensorDict >>> from torchrl.data import Composite, Unbounded >>> from torchrl.modules import TanhNormal, SafeSequential, TensorDictModule, NormalParamExtractor >>> from torchrl.modules.tensordict_module import SafeProbabilisticModule >>> td = TensorDict({"input": torch.randn(3, 4)}, [3,]) >>> spec1 = Composite(hidden=Unbounded(4), loc=None, scale=None) >>> net1 = nn.Sequential(torch.nn.Linear(4, 8), NormalParamExtractor()) >>> module1 = TensorDictModule(net1, in_keys=["input"], out_keys=["loc", "scale"]) >>> td_module1 = SafeProbabilisticModule( ... module=module1, ... spec=spec1, ... in_keys=["loc", "scale"], ... out_keys=["hidden"], ... distribution_class=TanhNormal, ... return_log_prob=True, ... ) >>> spec2 = Unbounded(8) >>> module2 = torch.nn.Linear(4, 8) >>> td_module2 = TensorDictModule( ... module=module2, ... spec=spec2, ... in_keys=["hidden"], ... out_keys=["output"], ... ) >>> td_module = SafeSequential(td_module1, td_module2) >>> params = TensorDict.from_module(td_module) >>> with params.to_module(td_module): ... td_module(td) >>> print(td) TensorDict( fields={ hidden: Tensor(torch.Size([3, 4]), dtype=torch.float32), input: Tensor(torch.Size([3, 4]), dtype=torch.float32), loc: Tensor(torch.Size([3, 4]), dtype=torch.float32), output: Tensor(torch.Size([3, 8]), dtype=torch.float32), sample_log_prob: Tensor(torch.Size([3, 1]), dtype=torch.float32), scale: Tensor(torch.Size([3, 4]), dtype=torch.float32)}, batch_size=torch.Size([3]), device=None, is_shared=False) >>> # The module spec aggregates all the input specs: >>> print(td_module.spec) Composite( hidden: UnboundedContinuous( shape=torch.Size([4]), space=None, device=cpu, dtype=torch.float32, domain=continuous), loc: None, scale: None, output: UnboundedContinuous( shape=torch.Size([8]), space=None, device=cpu, dtype=torch.float32, domain=continuous))
- 在 vmap 情況下
>>> from torch import vmap >>> params = params.expand(4, *params.shape) >>> td_vmap = vmap(td_module, (None, 0))(td, params) >>> print(td_vmap) TensorDict( fields={ hidden: Tensor(torch.Size([4, 3, 4]), dtype=torch.float32), input: Tensor(torch.Size([4, 3, 4]), dtype=torch.float32), loc: Tensor(torch.Size([4, 3, 4]), dtype=torch.float32), output: Tensor(torch.Size([4, 3, 8]), dtype=torch.float32), sample_log_prob: Tensor(torch.Size([4, 3, 1]), dtype=torch.float32), scale: Tensor(torch.Size([4, 3, 4]), dtype=torch.float32)}, batch_size=torch.Size([4, 3]), device=None, is_shared=False)