TensorDictMaxValueWriter¶
- class torchrl.data.replay_buffers.TensorDictMaxValueWriter(rank_key=None, reduction: str = 'sum', **kwargs)[原始碼]¶
一個可組合回放緩衝區(composable replay buffer)的 Writer 類,它根據某個排名鍵(ranking key)保留頂部元素。
- 引數:
rank_key (str 或 tuple of str) – 用於排名的鍵。預設為
("next", "reward")。reduction (str) – 如果排名鍵有多個元素,則使用的歸約方法。可以是
"max"、"min"、"mean"、"median"或"sum"。
示例
>>> import torch >>> from tensordict import TensorDict >>> from torchrl.data import LazyTensorStorage, TensorDictReplayBuffer, TensorDictMaxValueWriter >>> from torchrl.data.replay_buffers.samplers import SamplerWithoutReplacement >>> rb = TensorDictReplayBuffer( ... storage=LazyTensorStorage(1), ... sampler=SamplerWithoutReplacement(), ... batch_size=1, ... writer=TensorDictMaxValueWriter(rank_key="key"), ... ) >>> td = TensorDict({ ... "key": torch.tensor(range(10)), ... "obs": torch.tensor(range(10)) ... }, batch_size=10) >>> rb.extend(td) >>> print(rb.sample().get("obs").item()) 9 >>> td = TensorDict({ ... "key": torch.tensor(range(10, 20)), ... "obs": torch.tensor(range(10, 20)) ... }, batch_size=10) >>> rb.extend(td) >>> print(rb.sample().get("obs").item()) 19 >>> td = TensorDict({ ... "key": torch.tensor(range(10)), ... "obs": torch.tensor(range(10)) ... }, batch_size=10) >>> rb.extend(td) >>> print(rb.sample().get("obs").item()) 19
注意
此類不相容維度大於一的儲存。這並不意味著禁止儲存軌跡(trajectories),但儲存的軌跡必須是逐個軌跡儲存的。以下是一些該類有效和無效用法的示例。首先,一個用於儲存單個轉換(transitions)的扁平化緩衝區(flat buffer)。
>>> from torchrl.data import TensorStorage >>> # Simplest use case: data comes in 1d and is stored as such >>> data = TensorDict({ ... "obs": torch.zeros(10, 3), ... "reward": torch.zeros(10, 1), ... }, batch_size=[10]) >>> rb = TensorDictReplayBuffer( ... storage=LazyTensorStorage(max_size=100), ... writer=TensorDictMaxValueWriter(rank_key="reward") ... ) >>> # We initialize the buffer: a total of 100 *transitions* can be stored >>> rb.extend(data) >>> # Samples 5 *transitions* at random >>> sample = rb.sample(5) >>> assert sample.shape == (5,)
其次,一個用於儲存軌跡的緩衝區。最大訊號在每個批次中聚合(例如,每個 rollouts 的獎勵被求和)。
>>> # One can also store batches of data, each batch being a sub-trajectory >>> env = ParallelEnv(2, lambda: GymEnv("Pendulum-v1")) >>> # Get a batch of [2, 10] -- format is [Batch, Time] >>> rollout = env.rollout(max_steps=10) >>> rb = TensorDictReplayBuffer( ... storage=LazyTensorStorage(max_size=100), ... writer=TensorDictMaxValueWriter(rank_key="reward") ... ) >>> # We initialize the buffer: a total of 100 *trajectories* (!) can be stored >>> rb.extend(rollout) >>> # Sample 5 trajectories at random >>> sample = rb.sample(5) >>> assert sample.shape == (5, 10)
如果資料以批次形式傳入,但需要一個扁平化緩衝區,我們可以簡單地在擴充套件緩衝區之前將資料進行扁平化。
>>> rb = TensorDictReplayBuffer( ... storage=LazyTensorStorage(max_size=100), ... writer=TensorDictMaxValueWriter(rank_key="reward") ... ) >>> # We initialize the buffer: a total of 100 *transitions* can be stored >>> rb.extend(rollout.reshape(-1)) >>> # Sample 5 trajectories at random >>> sample = rb.sample(5) >>> assert sample.shape == (5,)
無法建立沿時間維度擴充套件的緩衝區,這通常是使用帶有批次軌跡的緩衝區的推薦方法。由於軌跡是重疊的,因此很難(如果不是不可能)聚合獎勵值並對其進行比較。此建構函式無效(注意 ndim 引數)。
>>> rb = TensorDictReplayBuffer( ... storage=LazyTensorStorage(max_size=100, ndim=2), # Breaks! ... writer=TensorDictMaxValueWriter(rank_key="reward") ... )
- add(data: Any) int | torch.Tensor[原始碼]¶
在適當的索引處插入單個數據元素,並返回該索引。
傳遞給此模組的 `rank_key` 中的資料應結構化為 []。如果它有更多維度,它將被使用 `reduction` 方法歸約(reduced)為單個值。