快捷方式

TensorDictMaxValueWriter

class torchrl.data.replay_buffers.TensorDictMaxValueWriter(rank_key=None, reduction: str = 'sum', **kwargs)[原始碼]

一個可組合回放緩衝區(composable replay buffer)的 Writer 類,它根據某個排名鍵(ranking key)保留頂部元素。

引數:
  • rank_key (strtuple of str) – 用於排名的鍵。預設為 ("next", "reward")

  • reduction (str) – 如果排名鍵有多個元素,則使用的歸約方法。可以是 "max""min""mean""median""sum"

示例

>>> import torch
>>> from tensordict import TensorDict
>>> from torchrl.data import LazyTensorStorage, TensorDictReplayBuffer, TensorDictMaxValueWriter
>>> from torchrl.data.replay_buffers.samplers import SamplerWithoutReplacement
>>> rb = TensorDictReplayBuffer(
...     storage=LazyTensorStorage(1),
...     sampler=SamplerWithoutReplacement(),
...     batch_size=1,
...     writer=TensorDictMaxValueWriter(rank_key="key"),
... )
>>> td = TensorDict({
...     "key": torch.tensor(range(10)),
...     "obs": torch.tensor(range(10))
... }, batch_size=10)
>>> rb.extend(td)
>>> print(rb.sample().get("obs").item())
9
>>> td = TensorDict({
...     "key": torch.tensor(range(10, 20)),
...     "obs": torch.tensor(range(10, 20))
... }, batch_size=10)
>>> rb.extend(td)
>>> print(rb.sample().get("obs").item())
19
>>> td = TensorDict({
...     "key": torch.tensor(range(10)),
...     "obs": torch.tensor(range(10))
... }, batch_size=10)
>>> rb.extend(td)
>>> print(rb.sample().get("obs").item())
19

注意

此類不相容維度大於一的儲存。這並不意味著禁止儲存軌跡(trajectories),但儲存的軌跡必須是逐個軌跡儲存的。以下是一些該類有效和無效用法的示例。首先,一個用於儲存單個轉換(transitions)的扁平化緩衝區(flat buffer)。

>>> from torchrl.data import TensorStorage
>>> # Simplest use case: data comes in 1d and is stored as such
>>> data = TensorDict({
...     "obs": torch.zeros(10, 3),
...     "reward": torch.zeros(10, 1),
... }, batch_size=[10])
>>> rb = TensorDictReplayBuffer(
...     storage=LazyTensorStorage(max_size=100),
...     writer=TensorDictMaxValueWriter(rank_key="reward")
... )
>>> # We initialize the buffer: a total of 100 *transitions* can be stored
>>> rb.extend(data)
>>> # Samples 5 *transitions* at random
>>> sample = rb.sample(5)
>>> assert sample.shape == (5,)

其次,一個用於儲存軌跡的緩衝區。最大訊號在每個批次中聚合(例如,每個 rollouts 的獎勵被求和)。

>>> # One can also store batches of data, each batch being a sub-trajectory
>>> env = ParallelEnv(2, lambda: GymEnv("Pendulum-v1"))
>>> # Get a batch of [2, 10] -- format is [Batch, Time]
>>> rollout = env.rollout(max_steps=10)
>>> rb = TensorDictReplayBuffer(
...     storage=LazyTensorStorage(max_size=100),
...     writer=TensorDictMaxValueWriter(rank_key="reward")
... )
>>> # We initialize the buffer: a total of 100 *trajectories* (!) can be stored
>>> rb.extend(rollout)
>>> # Sample 5 trajectories at random
>>> sample = rb.sample(5)
>>> assert sample.shape == (5, 10)

如果資料以批次形式傳入,但需要一個扁平化緩衝區,我們可以簡單地在擴充套件緩衝區之前將資料進行扁平化。

>>> rb = TensorDictReplayBuffer(
...     storage=LazyTensorStorage(max_size=100),
...     writer=TensorDictMaxValueWriter(rank_key="reward")
... )
>>> # We initialize the buffer: a total of 100 *transitions* can be stored
>>> rb.extend(rollout.reshape(-1))
>>> # Sample 5 trajectories at random
>>> sample = rb.sample(5)
>>> assert sample.shape == (5,)

無法建立沿時間維度擴充套件的緩衝區,這通常是使用帶有批次軌跡的緩衝區的推薦方法。由於軌跡是重疊的,因此很難(如果不是不可能)聚合獎勵值並對其進行比較。此建構函式無效(注意 ndim 引數)。

>>> rb = TensorDictReplayBuffer(
...     storage=LazyTensorStorage(max_size=100, ndim=2),  # Breaks!
...     writer=TensorDictMaxValueWriter(rank_key="reward")
... )
add(data: Any) int | torch.Tensor[原始碼]

在適當的索引處插入單個數據元素,並返回該索引。

傳遞給此模組的 `rank_key` 中的資料應結構化為 []。如果它有更多維度,它將被使用 `reduction` 方法歸約(reduced)為單個值。

extend(data: TensorDictBase) None[原始碼]

在適當的索引處插入一系列資料點。

傳遞給此模組的 `rank_key` 中的資料應結構化為 [B]。如果它有更多維度,它將被使用 `reduction` 方法歸約(reduced)為單個值。

get_insert_index(data: Any) int[原始碼]

返回資料應插入的索引,如果資料不應插入,則返回 `None`。

文件

訪問全面的 PyTorch 開發者文件

檢視文件

教程

為初學者和高階開發者提供深入的教程

檢視教程

資源

查詢開發資源並讓您的問題得到解答

檢視資源