set_composite_lp_aggregate¶
- class tensordict.nn.set_composite_lp_aggregate(mode: bool = True)¶
控制
CompositeDistribution的對數機率和熵是否將在單個張量中聚合。當
composite_lp_aggregate()返回True時,CompositeDistribution的對數機率/熵將求和到一個具有根 tensordict 形狀的單個張量中。此行為已被棄用,轉而支援非聚合的對數機率,後者提供更大的靈活性以及稍顯自然的 API(tensordict 樣本,tensordict 對數機率,tensordict 熵)。composite_lp_aggregate的值也可以透過環境變數 COMPOSITE_LP_AGGREGATE 進行控制。示例
>>> _ = torch.manual_seed(0) >>> from tensordict import TensorDict >>> from tensordict.nn import CompositeDistribution, set_composite_lp_aggregate >>> import torch >>> from torch import distributions as d >>> params = TensorDict({ ... "cont": {"loc": torch.randn(3, 4), "scale": torch.rand(3, 4)}, ... ("nested", "disc"): {"logits": torch.randn(3, 10)} ... }, [3]) >>> dist = CompositeDistribution(params, ... distribution_map={"cont": d.Normal, ("nested", "disc"): d.Categorical}) >>> sample = dist.sample((4,)) >>> with set_composite_lp_aggregate(False): ... lp = dist.log_prob(sample) ... print(lp) TensorDict( fields={ cont_log_prob: Tensor(shape=torch.Size([4, 3, 4]), device=cpu, dtype=torch.float32, is_shared=False), nested: TensorDict( fields={ disc_log_prob: Tensor(shape=torch.Size([4, 3]), device=cpu, dtype=torch.float32, is_shared=False)}, batch_size=torch.Size([4, 3]), device=None, is_shared=False)}, batch_size=torch.Size([4, 3]), device=None, is_shared=False) >>> with set_composite_lp_aggregate(True): ... lp = dist.log_prob(sample) ... print(lp) tensor([[-2.0886, -1.2155, -0.0414], [-2.8973, -5.5165, 2.4402], [-0.2806, -1.2799, 3.1733], [-3.0407, -4.3593, 0.5763]])