load_memmap¶
- class tensordict.load_memmap(prefix: str | pathlib.Path, device: Optional[device] = None, non_blocking: bool = False, *, out: Optional[TensorCollection] = None)¶
從磁碟載入記憶體對映的 tensordict。
- 引數:
prefix (str 或 資料夾路徑) – 應從中獲取已儲存 tensordict 的資料夾路徑。
device (torch.device 或 等效項, 可選) – 如果提供,資料將非同步轉換為該裝置。支援 `"meta"` 裝置,在這種情況下,資料不會被載入,而是建立一組空的 "meta" 張量。這對於在不實際開啟任何檔案的情況下了解模型大小和結構很有用。
non_blocking (bool, 可選) – 如果為 `True`,則在將張量載入到裝置後不會呼叫同步。預設為 `False`。
out (TensorDictBase, 可選) – 應將資料寫入其中的可選 tensordict。
示例
>>> from tensordict import TensorDict, load_memmap >>> td = TensorDict.fromkeys(["a", "b", "c", ("nested", "e")], 0) >>> td.memmap("./saved_td") >>> td_load = TensorDict.load_memmap("./saved_td") >>> assert (td == td_load).all()
此方法還允許載入巢狀的 tensordicts。
示例
>>> nested = TensorDict.load_memmap("./saved_td/nested") >>> assert nested["e"] == 0
tensordict 也可以在“meta”裝置上載入,或者作為假張量載入。
示例
>>> import tempfile >>> td = TensorDict({"a": torch.zeros(()), "b": {"c": torch.zeros(())}}) >>> with tempfile.TemporaryDirectory() as path: ... td.save(path) ... td_load = load_memmap(path, device="meta") ... print("meta:", td_load) ... from torch._subclasses import FakeTensorMode ... with FakeTensorMode(): ... td_load = load_memmap(path) ... print("fake:", td_load) meta: TensorDict( fields={ a: Tensor(shape=torch.Size([]), device=meta, dtype=torch.float32, is_shared=False), b: TensorDict( fields={ c: Tensor(shape=torch.Size([]), device=meta, dtype=torch.float32, is_shared=False)}, batch_size=torch.Size([]), device=meta, is_shared=False)}, batch_size=torch.Size([]), device=meta, is_shared=False) fake: TensorDict( fields={ a: FakeTensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), b: TensorDict( fields={ c: FakeTensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False)}, batch_size=torch.Size([]), device=cpu, is_shared=False)}, batch_size=torch.Size([]), device=cpu, is_shared=False)